Chapter 8

Using R for the Analysis of Cognitive Ability and Behavior Genetic Data

A. Alexander Beaujean*, ${ }^{*}$ and Jason Parkin ${ }^{\dagger, 2}$
${ }^{1}$ Baylor Psychometric Laboratory, Baylor University Waco, Texas, US
${ }^{2}$ Lake Washington School District
Redmond, Washington, US

Keywords: R, Cognitive Ability, Behavior Genetics, lavaan, Latent Variable Models

1. The R Program

1.1. Description

R (R Development Core Team, 2011) is a free, very flexible programming language, available for most operating systems (e.g., Windows, Mac, Linux). Thus, many professional statisticians, university students and faculty, as well as businesses are turning to it for their data analysis needs. The New York Times even published an article about R's growing popularity (Vance, 2009).
R is currently maintained by the R core-development team (an international team of volunteer developers), and the R Project's web page is http://www.r-project.org (also known as Comprehensive R Archive Network [CRAN]). This is the main site for R information, directions for obtaining the software, accompanying packages, and some user documentation.

1.2. Installing R

You can download R by going to http://www.r-project.org/. Then, on the left-hand side, click on CRAN and then select a mirror from the USA (unless you want to use R it a different language). This will bring you to a page with links to download R for Linux, Mac,

[^0]and Windows. Be sure to download the latest version.

There are GUIs for R, developed by third parties. A partial list can be found at R Wiki (http://rwiki.sciviews.org/doku.php?id=guis:projects) and the R site (http://www.sciviews.org/ rgui/). There are also many text editors that are either designed to interact with R, or can be modified to do so. Typing in " R text editor" (or something similar) into your favorite search engine will bring up many different text editor options, as well as people's opinons of the editors.

1.3. \quad Starting R

If you use the interactive mode for R (as opposed to batch mode), when you initially start it, something similar to the following syntax will automatically appear.

```
R version 2.15.0 (2012-03-30)
Copyright (C) 2012 The R Foundation for Statistical Computing
3 ISBN 3-900051-07-0
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
5
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
    Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
1 9
>>
```

The $>$ is called the prompt. It is not typed (if you type it, R will assume you mean "greater than"). Instead, it is used to indicate where you are to type. For interactive mode uses of R, you will type in all your commands at the $>$ prompt. If a command is too long to fit on a single line, $a+i s$ used for the continuation prompt. Another symbol that you will use frequently in R is the left arrow, $<-$, which is R's standard assignment operator (another option is using $=$, but it is better to reserve using = when your are defining values for arguments). The <- is R's way of assigning whatever is on the right of the arrow to the object on the left of the arrow.

The easiest way to begin to use R is as a calculator. For example:

```
1> 2+2
2[1] 4
```


1.4. Functions

R stores variables, data, functions, results, etc, in the computer's active memory in the form of named objects. The user can then do actions on these objects with operators (arithmetic, logical, comparison) and functions (which are themselves objects). Much of R use is done through functions that you can apply to data or other objects. R functions are a set of instructions that take your input, compute the desired value(s), and return the result. R comes pre-loaded with a set of commonly used functions, but you can add additional ones by either loading packages with the desired functions, or by writing your own function. To use functions: (a) give the function's name followed by parentheses; and (b) in the parentheses, give the necessary values for the function's argument(s). Here is an example of a function to calculate the arithmetic mean, named ArithMean ().

```
I> #Gives the arithmetic mean
2> ArithMean<-function(x) {
3+ Sx<-sum(x) #the sum() function is native to R
4+ Mean<- Sx/length(x) #the length() function is native to R
5+ return(Mean)
6+ }
7> ArithMean(c(5,10,15)) #the c() function is is defined later
[1] 10
```

First, we told R to define the function named ArithMean (), which only takes one argument, x (see line 2). The left brace, $\{$, indicates where the text of the function is going to start and the right brace, $\}$, is placed at the end of the function (line 6). After defining the function, line 7 gives the syntax to evaluate one call to it. Since the sum of the numbers in the vector $c(5,10,15)$ is 30 , the length of the vector (i.e., the number of elements) is 3 , and the call to the function returned the value 10 .

In the ArithMean () function, x is the formal argument, whereas in the call to function $C(5,10,15)$ is the actual argument. The formal argument is a placeholder, but $c(5,10,15)$ is the value used in the computation. Sometimes R functions have default arguments, which are values that a function's arguments will automatically initialize unless you specify a different value.

1.4.1. Useful R Functions

There are some very helpful R functions that you will use repeatedly.

- Comment. This is not really a function, but in R anything after the \# sign is assumed to be a comment and R will ignore it. Line 1 of the ArithMean () function was a comment, which R ignored when reading that syntax. Comments are extremely helpful "functions", as annotating your R code can save you a lot of time and effort.
- Concatenate. The concatenate function, c (), will concatenate (i.e, join) the arguments you include in the function. If you use the $c()$ function in conjunction with $<-$, you can assign whatever you are concatenating into a new object. For example, to make a data set of 5 observations with the values $4,53,6,9$, and name it newData you would use the following syntax.

```
1> newData<-c (4,5,3,6,9)
```

- Help. The help () function will obtain information about a function (or certain special words or characters). You can also use a question mark, ?, as a shortcut for the help function. For example, the following two lines of syntax will return the same results.

```
1> help(mean)
2
3> ?mean
```

The help () function returns a page that (at least) describes the function (or word/character), its arguments, and gives some examples of how to use the function. Some pages have much more detail than others. If you just want to examine/run the example syntax for a function, you can use the example () function.

```
1> example(mean)
2
3mean> x <- c(0:10, 50)
4
5mean> xm <- mean(x)
6
7 mean> c(xm, mean(x, trim = 0.10))
8[1] 8.75 5.50
```

If you want help on an entire R package, then use the package argument in the help () function.

```
1 \text { help(package=lavaan) \#you need to install the lavaan package first}
```

If you do not know exactly you need to do within R, then you can search R's documentation via the help. search () function. The argument you use in the function needs to be enclosed in quotation marks. For example, if you are interested in testing to see if a variable follows a normal distribution, you could use the following syntax.

```
1> help.search("normality")
```

This produces a response that contains functions from packages that might be of interest. An example of such output is shown in Figure 1, which indicates that in the stats package (a package R installs by default) there is a function called shapiro.test () that will perform the Shapiro-Wilk test for normality.

Topic	Package	Description
shapiro.test	stats	Shapiro-Wilk Normality Test

Figure 1. Example Results from help. search () Function.
Another useful way to get help is to use the Rseek web site (http://www.rseek.org/), which is a site that uses Google to find R functions, lists, code, etc. If you are totally lost on where to start asking for help, then typing help. start () into R will return much of the important documentation needed to navigate R, as well as providing yet another search engine for R helping materials.

1.5. R Packages

Functions are a very important part of using R. When you first downloaded R, it came with some base packages that supply functions for many statistical analysis [e.g., mean (), var ()]. These functions, however, may not do the specific analysis you specifically need to do. Thus, you can look to see if a contributed R package can do what you need to do. These R packages usually consist of data and functions that were written in the R language (although sometimes they are written in FORTRAN or C and then linked back into R). This user-contribution ability is extremely powerful, as there are many experts in various fields using R, some of whom have contributed packages that can make your data analysis projects much easier.

The list of R packages, with a short description of what they do, can be found in CRAN, but it is very long and hard to navigate unless you know the specific name of the package for which you are looking. An alternative is to examine the CRAN task views http://cran.r-project.org/web/views/, which is designed to help users find packages associated with specific types of work. For example, the Psychometrics http://cran.rproject.org/web/views/Psychometrics.html view has many packages dealing with item and test analysis.

To install a package from the command line, use the install.packages () function, naming the package to install in quotation marks. For example, to install the BaylorEdPsych (Beaujean, 2012) package, use the following syntax.

```
1 install.packages("BaylorEdPsych", dep = TRUE)
```

The dep $=$ TRUE argument tells R that in addition to the package of interest, also download any other package upon which the package of interest is dependent. (This saves you from having to download each required package separately.)

You only need to install a package to the hard disk one time, but you will need to load it into memory every time you start a new R session and need to use one of the package's functions using the library () function, e.g.,

```
1 library(BaylorEdPsych)
```

(Notice there are no quotation marks around the package name.)
R is case sensitive, so Install.packages("BaylorEdPsych", dep $=$ TRUE), install.packages("BaylorEdpsych", dep = TRUE), or install.Packages("BaylorEdPsych", dep = TRUE) (or any other permutation) will result in R returning an error message.

1.6. Inputting Data

1.6.1. Concatenate

The easiest way to enter data into R is to type it in directly using the concatenate, $\mathrm{c}(\mathrm{)}$ function and assign a name to it. To verify that that your data is in your object (i.e., a vector), just type the object's name.

```
1> newData<-c (4,5,3,6,9)
2> newData
```

```
3[1] 4 5 3 6 9
```

Then you can immediately apply functions to the new object, newData

```
> mean(newData)
[1] 5.4
3> sum(newData)
4 [1] 27
```


1.6.2. Reading In Data from an External Source

Unless the data set has one variable with a few observations (e.g., data from a textbook example), you will usually want to store your data in an external file and have R load the data into its working memory.
read.table() One way to read externally-stored data is the read.table function. Before doing this, however, it will be beneficial to do three things to your data. First, change all missing values to NA, which is the default missing value indicator in R. Second, make sure all the variable names are only one word (i.e, there are no spaces), but you can use the "." in lieu of a space (e.g., first.name). Third, either save the file as a tab-delimited text (.txt) file or a comma-delimited .txt or .csv file. Most spreadsheet and database programs can save data either way.

In order to read the file, you will need to point R to the directory where it is located. In R you have to use a forward slash (how Mac and other UNIX-type systems store files) or double backslash when giving a file location, e.g., C: $\backslash \backslash$ Regression $\backslash \backslash$ Data.csv. Let's say you have a . csv file called data.csv that has your data (with a label on the first row of each variable) located in a folder called name, which is in a folder called file. You can type either of the following syntaxes into R to read the file.

```
1 # Windows
2 new.data<-read.table("C:\\file\\name\\data.csv", header=TRUE, sep=",")
3 new.data<-read.csv("C:\\file\\name\\data.csv", header=TRUE)
4 new.data<-read.csv("C:/file/name/data.csv")
5
6# Unix-type systems
7 new.data<-read.table("/Users/first_last/file/name/data.csv", header=TRUE,
    sep=",")
8 new.data<-read.csv("/Users/first_last/file/name/data.csv", header=TRUE)
```

Notice that the read.csv () function is the just like the read.table () function, only it assumes you have comma-delimited values, so you do not have to use the sep="," argument with it.

If you store your data under many sublayers of folders, or you forget the exact location, you can search for your data file using the file. choose () function.

```
1 new.data<-read.table(file.choose(), header=T,sep=",")
```


1.6.3. Inputting a Correlation/Covariance Matrix

In some situations you will not have access to raw data, but will have access to a covariance matrix. You could type the entire matrix into R using the matrix() function, but since such matrices are symmetric, you can make use of the diag(), upper.tri() and lower.tri() functions. By default, R will assume you are entering the data for the matrix by columns. The following code will create a correlation matrix titled CorM that consists of the correlations among four variables. In addition, give names to the variables using the rownames () and colnames () functions.

```
1> CorM<-diag(4) #4 x 4 Diagonal matrix
2 > CorMNames<-c("Var1", "Var2", "Var3", "Var4") #Names of the variables
3> rownames(CorM) <-colnames (CorM)<-CorMNames #Gives row and column names
4> CorM[lower.tri(CorM, diag=FALSE)]<-c(.85, .84, .68, .61, .59, .41) #
    lower triangle of matrix, order is by columns
5 CorM[upper.tri(CorM, diag=FALSE)] <- CorM[lower.tri(CorM)] #make matrix
    full
6> CorM
7
8 Var1 Var2 Var3 Var4
9 Var1 1.00 0.85 0.84 0.61
0 Var2 0.85 1.00 0.68 0.59
1 Var3 0.84 0.61 1.00 0.41
12 Var4 0.68 0.59 0.41 1.00
```


1.7. The lavaan Package

lavaan (Rosseel, 2012) is an R package designed to do structural equation modeling. Information and documentation about it can be found on the web page: http://www.lavaan.org which redirects to http://lavaan.ugent.be.

You can install lavaan from CRAN via the following R syntax

```
1 install.packages("lavaan", dependencies=TRUE)
```

To compute a model in lavaan, first you have to specify the model as text, using a few pre-defined commands that are shown in Table 1.

Table 1. lavaan commands

Syntax	Command	Example
\sim	Regress onto	Regress B onto A: B \sim A
$\sim \sim$	(Co)varaince	Variance of A: A $\sim \sim$ A
		Covariance of A and $\mathrm{B}: \mathrm{A} \sim \sim B$
~ 1	Constant/mean	Regress B onto A , and and include the intercept in the model: $B \sim 1+A$
$\sim=$	Define latent variable	Define Factor 1 by A-D:
		F1 ~ $A+B+C+D$
:=	Define non-model parameters	Define parameter $u 2$ to be 2 times the square of u : $u 2:=2 *\left(u^{\wedge} 2\right)$
$<\sim$	Define formative variables	Define Variable A by $X_{1}-X_{4}$:
		$\mathrm{A}<\sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4$

Within the model, you can label parameters by premultiplying the label onto one of the

Figure 2. Path Model Example.
variables on the left hand side of an equation. For example, the syntax for specifying the model in Figure 2 in lavaan would be as follows.

```
1 example.model<-'
2C ~ y*B + w*A
3D ~ z*C + x*A
4 C~~C_Resid*C #Optional, included just to label residual variance
5 D~~D_Resid*D #Optional, included just to label residual variance
6'
```

Line 1, consists of the name of the model (example.model), the assignment operator $(<-)$ and single apostrophe, which indicates that the subsequent syntax will be passed as text. Line 2 defines the structural model for C , with labels for each parameter, designed to map onto the labels in Figure 2; likewise, line 3 defines the structural model for D with labels. Lines 4 and 5 are optional. By default, lavaan creates an error term for each endogenous variable and estimates the variance while constraining the path to one. So, the only thing lines 4 and 5 contribute is the labeling of these error variances. Likewise, by default lavaan creates a covariance term for each exogenous variable (represented by the two-headed arrow from A to B in Figure 2). Line 6 is another single apostrophe, indicating the end of the syntax-as-text option.

You can fit the specified model by using either the cfa () (for factor analytic models), or sem () (for structural equation models) functions. The cfa() and sem () functions are really just the calls to a more general lavaan () function with some of the default values specified differently. To obtain the default values for the cfa() or sem() functions, as
well as their various arguments, type ?cfa or ?sem, respectively, in R.
lavaan accepts either a covariance matrix (with sample size) or raw data as input, using the sample.cov= (with sample.nobs=) or data= arguments, respectively. If using the covariance matrix as input, you can optionally also input a mean vector with the sample.mean= argument. By default, lavaan uses normal-theory maximum likelihood as the parameter estimation technique for continuous-variable indicators, but you can change this to generalized least squares, weighted least squares (ADF), unweighted least squares, or diagonally weighted least squares (for categorical indictors) by specifying them in the estimator= argument.

For example, say data was collected from 500 individuals on variables A-D that were specified in example.model, and the data has been inputted into R, naming it example.data. To estimate the parameters in example.model using example.data, use the following lavaan syntax.

1 example.fit<-sem (example.model, data=example.data)
To input the correlation matrix of the data (named, say, example.cov) instead of the raw data, use the following syntax

1 example.fit<-sem (example.model, sample.cov=example.cov, sample.nobs=500)
Both calls will return nothing on-screen because the the results are stored in the example.fit object. To obtain the results, use the summary () function.

```
1 summary (example.fit)
```

By default, the summary() function for lavaan objects will produce (a) a note indicating if the minimization algorithm converged; (b) the sample size; (c) estimator; (d) $\chi^{2} ;(e) \chi^{2}$ degrees of freedom; (f) p-value of the $\chi^{2} ;(g)$ the unstandardized parameter estimates; (h) their parameter estimates' standard errors; (i) the ratio of the parameter estimates and their standard errors (i.e., Z); and (j) the ratio's p-value. The summary () function has these default specifications for its arguments: standardized=FALSE, fit.measures=FALSE, rsquare=FALSE, modindices=FALSE. Setting standardized=TRUE will include standardized estimates in the results, setting fit. measures=TRUE will include various fit indices in the results, setting rsquare=TRUE will include the R^{2} for each exogenous variable, and setting modindices=TRUE will include fit indices.

For the many other functions the package includes, see the documentation for the lavaan package here http://cran.r-project.org/web/packages/lavaan/lavaan.pdf

2. Latent Variable Models of Cognitive Ability

2.1. Single Factor Model

Much of the cognitive ability literature indicates that there is a single general (common) intelligence factor (g) that influences most measures of cognitive ability (Jensen, 1998; Spearman, 1927). Such a model, using subtests from the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV (Wechsler, 2003a)) is shown in Figure 3. This model
specifies that the only reason the subtests are correlated is because of g, and that once you account for g, the subtests are no longer correlated. g does not explain all of the variance in the subtests, however. Those residual/error functions accounting for non- g related variance are represented as single-headed arrows not attached to the common factor.

Figure 3. Single factor model of cognitive ability from the WISC=IV.

Some sample correlations and standard deviations (SD) for the following WISC-IV subtests are shown in Table 2 taken from (Parkin \& Beaujean, 2012), p. 118: Comprehension, Information, Matrix Reasoning, Picture Concepts, Similarities, Vocabulary, Digit Span, Letter Number Sequencing, Coding and Symbol Search.

Table 2. Correlations and standard deviations for WISC-IV subtests

	Subtest	1	2	3	4	5	6	7	8	9	10
1	Comprehension	1.00									
2	Information	0.62	1.00								
3	Matrix Reasoning	0.34	0.51	1.00							
4	Picture Concepts	0.33	0.37	0.39	1.00						
5	Similarities	0.63	0.73	0.48	0.38	1.00					
6	Vocabulary	0.71	0.74	0.46	0.37	0.74	1.00				
7	Digit Span	0.41	0.42	0.37	0.31	0.43	0.45	1.00			
8	Letter Number	0.44	0.50	0.43	0.38	0.50	0.52	0.51	1.00		
9	Coding	0.27	0.30	0.28	0.27	0.23	0.29	0.30	0.32	1.00	
10	Symbol Search	0.34	0.43	0.41	0.30	0.38	0.39	0.37	0.45	0.49	1.00
	SD	2.88	3.01	2.89	2.98	3.03	3.02	2.98	2.99	2.96	3.12

Note. Correlations and Standard Deviations taken from (Parkin \& Beaujean, 2012), p. 118.

To analyze this model in lavaan, we need to (a) input the correlation matrix and SD vector; (b) convert the correlations to covariances (Cudeck, 1989); (c) specify the factor model; (d) estimate the model parameters; and (e) assess the model to see how well it fits the data.

First, enter the data (the correlation matrix and standard deviation vector). One option when entering covariance/correlation matrices is to type the entire matrix into R using the matrix() function, but a simpler option is to make use of the fact that such matrices are symmetric and use the diagonal, upper and lower triangle, and transpose functions, diag(), upper.tri(), lower.tri(), and (), respectively. By default, R assumes the data being entered for a matrix is by columns.

[^1]```
4 WiscIV.cor[lower.tri(WiscIV.cor)]<-c(0.62, 0.34, 0.33, 0.63, 0.71, 0.41,
 0.44, 0.27, 0.34, 0.51, 0.37, 0.73, 0.74, 0.42, 0.50, 0.30, 0.43,
 0.39, 0.48, 0.46, 0.37, 0.43, 0.28, 0.41, 0.38, 0.37, 0.31, 0.38,
 0.27, 0.30, 0.74, 0.43, 0.50, 0.23, 0.38, 0.45, 0.52, 0.29, 0.39,
 0.51, 0.30, 0.37, 0.32, 0.45, 0.49)
5 #Transpose the lower triangle to input the upper triangle of the matrix
6WiscIV.cor[upper.tri(WiscIV.cor)]<-t(WiscIV.cor)[upper.tri(WiscIV.cor)]
7 #input the SDs
8WiscIV.sd<-c(2.88,3.01,2.89,2.98,3.03,3.02,2.98,2.99,2.96,3.12)
```

Next, convert the correlations to covariances.

```
1 #make covaraice out of correlations
2 library (lavaan)
3WiscIV.cov<-cor2cov(WiscIV.cor, WiscIV.sd)
4 #name the rows and columns of the covariance matrix
5 rownames(WiscIV.cov)<-colnames(WiscIV.cov)<-c("Comprehension", "
 Information", "Matrix.Reasoning", "Picture.Concepts", "Similarities",
 "Vocabulary", "Digit.Span", "Letter.Number", "Coding", "Symbol.
 Search")
6#To see the actual WiscIV.cov object
7WiscIV.cov
```

The cor $2 \operatorname{cov}()$ function is part of the lavaan package, so you need to load that, via the library () function, before using it. The covariance matrices used for analysis in lavaan need to have both row and column names or lavaan will not be able to match the variable in the data with the variable in the model.

Next, specify the single factor model in lavaan.

```
1 WISC.oneFactor.model<-'
2g=~ Comprehension + Information + Matrix.Reasoning + Picture.Concepts +
 Similarities + Vocabulary + Digit.Span + Letter.Number + Coding +
 Symbol.Search
3'
```

The model itself is enclosed in apostrophes (i.e., it is a text object). $g$ is defined $\left(=^{\sim}\right)$ using all 10 WISC-IV subtests, which is specified by using the + sign before each additional variable after the $=^{\sim}$.

To obtain the parameter estimates, first, estimate the parameters using the cfa() function.

```
1WISC.oneFactor.fit<-cfa(model=WISC.oneFactor.model, sample.cov=WiscIV.cov
 , sample.nobs=550, std.lv=TRUE)
```

The first two arguments to the cfa () function are the model and the data (i.e., covariance matrix), which we have already defined. The third argument, sample.nobs(), tells lavaan the sample size from which the covariance matrix was calculated and needs to be used anytime a covariance matrix is used for input. The last argument, std.lv=TRUE, tells lavaan to estimate all the factor loadings (pattern coefficients) and constrain the latent variable's variance to unity. If the std. $1 \mathrm{v}=$ TRUE option is not used, then the factor variance would be estimated and the first indicator variable's loading would be set to unity.

To print the parameter estimates, use the summary () function. Specifying the standardized=TRUE argument in the summary () function produces the standardized factor loadings (standardized regression weights) as well as the unstandardized loadings.

```
lavaan (0.5-9) converged normally after 28 iterations
2
 Number of observations 550
 Estimator ML
 Minimum Function Chi-square 276.092
 Degrees of freedom 35
 P-value 0.000
Parameter estimates:
 Information Expected
 Standard Errors Standard
Latent variables:
 g =~
 Information
 2.159 0.107
 20.118
 0.000
 2.159 0.750
 2.534 0.106 23.911 0.000
 2.534 0.843
 Matrix.Resnng
 1.680 0.116 14.439
 0.000
 1.680 0.582
 Pictur.Cncpts
 Similarities
 Vocabulary
 Digit.Span
 Letter.Number
 Coding
 Symbol.Search
 Estimate Std.err Z-value P(>|z|) Std.lv Std.all
\(2.159 \quad 0.107\)
\begin{tabular}{ll}
2.159 & 0.750 \\
2.534 & 0.843 \\
1.680 & 0.582 \\
1.408 & 0.473 \\
2.525 & 0.834 \\
2.615 & 0.867 \\
1.649 & 0.554 \\
1.896 & 0.635 \\
1.127 & 0.381 \\
1.616 & 0.518
\end{tabular}
Variances:
 Comprehension
\begin{tabular}{ll}
3.619 & 0.246 \\
2.624 & 0.202 \\
5.515 & 0.348 \\
6.882 & 0.426 \\
2.789 & 0.211 \\
2.268 & 0.187 \\
6.144 & 0.385 \\
5.327 & 0.341 \\
7.477 & 0.458 \\
7.105 & 0.443
\end{tabular}
\begin{tabular}{ll}
3.619 & 0.437 \\
2.624 & 0.290 \\
5.515 & 0.662 \\
6.882 & 0.776 \\
2.789 & 0.304 \\
2.268 & 0.249 \\
6.144 & 0.693 \\
5.327 & 0.597 \\
7.477 & 0.855 \\
7.105 & 0.731 \\
1.000 & 1.000
\end{tabular}
```

The top part of the output can be used as a double-check to make sure the model was specified correctly. For this model, $n=550$ (correct!) and the $d f=10 \times 11 / 2-(10+10)=$ $55-20=35$ (correct!). The factor loadings in the Est imate column give the unstandardized loadings, while the loadings in the Std. all column give the standardized loadings. Both indicate that each indicator is a relatively strong measure of $g$, with Vocabulary being the most saturated (i.e., having the strongest loading) and Coding being the least.

To estimate the communality of each indicator (i.e., the amount of variance $g$ explains), either calculate the values "manually" by squaring each loading, or let $R$ do the work by extracting the loadings by using the inspect () function with the what="rsquare" argument.

[^2]```
2 Comprehension Information Matrix.Reasoning Picture.Concepts
30.5628758 0.7098617 0.3384281 0.2236483
Similarities
Vocabulary
    Digit.Span
0.6956403
    0.7508676
Letter.Number
    Coding Symbol.Search
0.4030142
    0.1451074
    0.2688097
```

From the output, you can see that g explains from $15-75 \%$ of the variance in the subtests.
Last, to obtain some measures of model fit, use the fitMeasures () function.

```
1> fitMeasures(WISC.oneFactor.fit)
2chisq 
5 baseline.df baseline.pvalue
645.000 0.000
7
8cfi tli logl unrestricted.logl
90.904 0.876 -12676.518 -12538.472
0 npar aic
120.000 25393.037
1 2
3bic ntotal bic2 rmsea
425479.235 550.000 25415.747 0.112
15
6 rmsea.ci.lower rmsea.ci.upper
70.100 0.124
18
9rmsea.pvalue srmr srmr_nomean
200.000 0.067 0.067
```

While lavaan does not print out every fit statistic values, it does print enough information to estimate any other fit statistics. For example, McDonald's (McDonald, 1989) noncentrality index (Mc), is calculated as:

$$
\begin{equation*}
M c=\exp \left(-0.5 d_{T}\right) \tag{1}
\end{equation*}
$$

where
$\exp ()$ is the exponentiation function, and
d_{T} is the scaled NCP (noncentrality index) for the target model, i.e, $d_{T}=\frac{\chi^{2}-d f}{n-1}$. This is calculated in R using the following syntax:

```
1> NCP<-as.numeric(fitMeasures(WISC.oneFactor.fit, fit.measures="chisq"))
        - as.numeric(fitMeasures(WISC.oneFactor.fit, fit.measures="df")) #
    Non-centrality Parameter
2> d<- NCP/550 #scaled NCP
3> Mc<-exp (-0.5*d)
4> Mc
5[1] 0.8031815
```

where the as.numeric () function strips away everything in the object except the number.

2.2. Multifactor Model

Many current scholars in cognitive ability research argue that there is more than a single factor (general) factor influencing performance on cognitive ability tests (e.g. (Newton \& McGrew, 2010)). Instead, they posit that there are multiple factors, although these factors are related to each other. Such a multifactor model of the WISC-IV data is shown in Figure 4, which posits that there are four factors: (a) Comprehension-Knowledge (Gc), (b) Fluid Intelligence (Gf), (c) Short-term Retrieval (Gsm), and (d) Processing Speed (Gs) (cf. (Wechsler, 2003b)).

Figure 4. Four Factor Model of Cognitive Ability from the WISC-IV.

Since this model uses the same data as the single factor model, the data entry component is the same. The model specification in lavaan is as follow.

```
1> WISC.fourFactor.model<-'
2Gc =~ Comprehension + Information + Similarities + Vocabulary
3Gf =~ Matrix.Reasoning + Picture.Concepts
4Gsm =~ Digit.Span + Letter.Number
5Gs =~ Coding + Symbol.Search
6'
```

To estimate the parameters and obtain the fit statistics, use the following syntax.

```
1> WISC.fourFactor.fit<-cfa(model=WISC.fourFactor.model, sample.cov=WiscIV
        .cov, sample.nobs=550, std.lv=TRUE)
2> summary(WISC.fourFactor.fit, fit.measure=TRUE, standardized=TRUE)
3
4 lavaan (0.5-9) converged normally after 40 iterations
5
    Number of observations 550
    Estimator ML
    Minimum Function Chi-square 51.634
    Degrees of freedom 29
1 1 ~ P - v a l u e ~ 0 . 0 0 6 ~
1 2
13Chi-square test baseline model:
1 4
15 Minimum Function Chi-square 2552.014
16 Degrees of freedom 45
17 P-value 0.000
1 8
```

```
9Full model versus baseline model:
20
2 1 ~ C o m p a r a t i v e ~ F i t ~ I n d e x ~ ( C F I ) ~ 0 . 9 9 1 ~
2 2 ~ T u c k e r - L e w i s ~ I n d e x ~ ( T L I ) ~ 0 . 9 8 6 ~
23
24 Loglikelihood and Information Criteria:
25
26 Loglikelihood user model (HO) -12564.289
27 Loglikelihood unrestricted model (H1) -12538.472
28
2 9 ~ N u m b e r ~ o f ~ f r e e ~ p a r a m e t e r s ~ 2 6 ~
30 Akaike (AIC) 25180.578
31 Bayesian (BIC) 25292.636
32 Sample-size adjusted Bayesian (BIC) 25210.101
33
34 Root Mean Square Error of Approximation:
35
```



```
37 90 Percent Confidence Interval 0.020 0.054
38 P-value RMSEA <= 0.05 0.885
39
4 0 \text { Standardized Root Mean Square Residual:}
41
4 2 ~ S R M R ~ 0 . 0 2 0 ~
4 3
4 \text { Parameter estimates:}
4 5
4 6 ~ I n f o r m a t i o n ~ E x p e c t e d ~
4 7 \text { Standard Errors Standard}
4 8
4 9 ~ E s t i m a t e ~ S t d . e r r ~ Z - v a l u e ~ P ( > \| z \| ) ~ S t d . l v ~ S t d . a l l ~
50 Latent variables:
51 Gc =~
52 Comprehension 2.192 0.107 20.526 0.000 2.192 0.762
Information [lllllll
54 Similarities 
```



```
6 Gf =~
5 7 ~ M a t r i x . R e s ~
Pictur.Cncpt
        Gsm =~
            Digit.Span
            Letter.Number 2.305 0.126 18.234 18, 0.000 2.305 0.772
                1.968 0.126 15.589
            0.000
            1.968 0.661
        Gs =~
            Coding
            Symbol.Search
                1.778 0.136 13.060 0.000
                1.778
            0.601
                2.541 0.152 16.740 0.000 
                    6
                    6 6 \text { Covariances:}
67 Gc ~ ~
\begin{tabular}{llllllll}
68 & Gf & 0.779 & 0.041 & 18.896 & 0.000 & 0.779 & 0.779 \\
69 & Gsm & 0.765 & 0.033 & 23.395 & 0.000 & 0.765 & 0.765 \\
70 & Gs & 0.560 & 0.042 & 13.171 & 0.000 & 0.560 & 0.560 \\
71 & Gf \(\sim \sim\) & & & & & \\
72 & Gsm & 0.824 & 0.050 & 16.405 & 0.000 & 0.824 & 0.824 \\
73 & Gs & 0.705 & 0.054 & 12.940 & 0.000 & 0.705 & 0.705
\end{tabular}
```


Notice the fit.measure=TRUE argument in the summary () function. Specifying this gives the fit indices along with the model parameter estimates, which is an alternative to using the fitMeasures () function.

As the single factor model is nested in the four-factor model (i.e., the one-factor model is a more restrictive version of the four factor model (Brunner, Nagy, \& Wilhelm, 2012)), the models can be compared directly using the anova () function.

```
1 Chi Square Difference Test
```



```
6 ---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1
```

It appears that from both the change in χ^{2} values and the other fit measures that the fourfactor model fits the data somewhat better than the single factor model.

2.3. Higher-Order Model

The models considered thus far have only estimated factors that directly influence the subtests. An alternative to this kind of model is a higher-order model, which specifies that there are factors that directly influence the subtests (i.e, first-order factors) as well as factors that directly influence the factors (i.e., second-order factors) (Rindskopf \& Rose, 1988). A typical higher-order model for cognitive abilities data is one that posits that g is the sole reason why the the first-order factors are correlated with each other (Carroll, 1993). Such a model is shown in Figure 5.

The specification of this model is similar to that from the single- and multi-factor models, except this model also requires specifying a factor made up of the four other factors.

```
1 WISC.higherOrder.model<-'
2gc =~ Comprehension + Information + Similarities + Vocabulary
```


Figure 5. Higher Order Factor Model of Cognitive Ability from the WISC-IV.

```
3gf =~ Matrix.Reasoning + Picture.Concepts
4gsm =~ Digit.Span + Letter.Number
5gs =~ Coding + Symbol.Search
6
7g=~ NA*gf + gc + gsm + gs
8 g~~1*g
9'
```

Notice the NA $*$ in front of the $g f$ term in line 7. This tells lavaan to estimate this loading instead of constraining it to unity (i.e., 1), which is the default. The trade-off for doing this is that g 's variance must be constrained to unity, which is done with the $g^{\sim \sim} 1 * g$ syntax in line 8 . This is done because it is better to estimate the (residual) variances of the first-order factors instead of constrain them to be unity.

Next, estimate the parameters and obtain the results and fit statistics.

```
1 > WISC.higherOrder.fit<-cfa(model=WISC.higherOrder.model, sample.cov=
            WiscIV.cov, sample.nobs=550)
> summary(WISC.higherOrder.fit, fit.measure=TRUE, standardized=TRUE)
3 \text { lavaan (0.5-9) converged normally after 56 iterations}
4
5 \text { Number of observations 550}
6
    Estimator ML
    Minimum Function Chi-square 57.592
    Degrees of freedom 31
    P-value 0.003
1 1
2Chi-square test baseline model:
3
14 Minimum Function Chi-square 2552.014
1 5 \text { Degrees of freedom 45}
16 P-value 0.000
1 7
8 Full model versus baseline model:
19
20 Comparative Fit Index (CFI) 0.989
21 Tucker-Lewis Index (TLI) 0.985
2 2
3 Loglikelihood and Information Criteria:
24
25 Loglikelihood user model (H0) -12567.268
26 Loglikelihood unrestricted model (H1) -12538.472
2 7
28 Number of free parameters
```

Akaike (AIC)
25182.537
30 Bayesian (BIC)
25285.975
31 Sample-size adjusted Bayesian (BIC) 25209.788
3 Root Mean Square Error of Approximation:

```

```

36 90 Percent Confidence Interval 0.023 0.055
37 P-value RMSEA <= 0.05 0.856
39Standardized Root Mean Square Residual:
4 1 ~ S R M R
0.023
43 Parameter estimates:
4 5 Information Expected
4 6 Standard Errors Standard
48 Estimate Std.err Z-value P(>|z|) Std.lv Std.all
49 Latent variables:
50 gc =~
5 1 ~ C o m p r e h e n s i o n ~
5 2 ~ I n f o r m a t i o n ~
53 Similarities
Vocabulary
gf =~
Matrix.Resnng
Pictur.Cncpts
gsm =~
Digit.Span
Letter.Number
1.000
1.160 0.056
20.813
0.000

2.194	0.762
2.545	0.846
2.555	0.844
2.670	0.885
1.990	0.689
1.685	0.566
1.967	0.661
2.306	0.772
1.771	0.599
2.551	0.818
0.930	0.930
0.818	0.818
0.927	0.927
0.730	0.730

70 Variances:

71	g	1.000	
72	Comprehension	3.467	0.240
73	Information	2.567	0.203
74	Similarities	2.634	0.208
75	Vocabulary	1.976	0.181
76	Matrix.Resnng	4.377	0.424
77	Pictur.Cncpts	6.026	0.435
78	Digit.Span	4.996	0.378
79	Letter.Number	3.606	0.382
80	Coding	5.610	0.430
81	Symbol.Search	3.210	0.584
82	gc	1.596	0.226
83	gf	0.533	0.340

1.000	1.000
3.467	0.419
2.567	0.284
2.634	0.287
1.976	0.217
4.377	0.525
6.026	0.680
4.996	0.564
3.606	0.404
5.610	0.641
3.210	0.330
0.332	0.332
0.135	0.135

```
32
34
38
40
42
44
47
69
\begin{tabular}{llllll}
\hline & & & & \\
84 & gsm & 0.547 & 0.241 & 0.141 & 0.141 \\
85 & gs & 1.464 & 0.263 & 0.467 & 0.467 \\
\hline
\end{tabular}

Notice the lack of std.lv=TRUE argument in the cfa () function, which is equivalent to including the argument std.lv=FALSE because that is the default value for the function.

To estimate the direct impact of \(g\) and the first-order factors on the WISC-IV subtests, use Wright's (Wright, 1934, 1968) rules (cf. (Loehlin, 2004)). Specifically, the factor loadings of the subtests on \(g\) are computed by multiplying the factor loading of each subtest on the corresponding first-order factor by the factor loading of this first-order factor on \(g\). For example, the standardized loading of the Comprehension subtest score on \(g\) is computed as \(.762 \times .818=.623\). Further, the loadings of the subtests on a specific factor can be computed by multiplying the factor loading of each subtest on the corresponding first-order factor by the standard deviation of the corresponding specific factor. For example, the standardized loading of the Comprehension subtest score on \(G c\) is \(.762 \times .576=.439\) (the [standardized] variance of \(G c\) is .332 and \(\sqrt{.332}=.576\) ).

This model fits the data very similarly to the four-factor model, although since the higher-order model is more parsimonious (it estimates 24 parameters instead of the 26 parameters the four-factor model estimates), it is probably a better model for this data. One other way to see how well this model fit the data is to inspect the residual correlations of the first-order factors (i.e., the difference between the model-implied correlations among the first-order constructs and the corresponding correlations in the first-order factor model (McDonald, 2011)). The actual and implied correlations are given in Table 3. The residuals are given in Table 4, and range from -. 04 to .03 , which are likely not of much concern. Another way to see how well the model fits is to examine the amount of variance in the firstorder factors explained by the second order factor (see Table 5). With this data, \(g\) explains between 54 and \(87 \%\) of the first order factors' variances.

Table 3. Correlations among first-order factors (Actual correlations are in upper
triangle and implied correlations are in the lower triangle)
\begin{tabular}{lcccc} 
height & Gf & Gc & Gsm & Gs \\
\hline Gf & 1.00 & 0.78 & 0.82 & 0.71 \\
Gc & 0.76 & 1.00 & 0.77 & 0.56 \\
Gsm & 0.86 & 0.76 & 1.00 & 0.71 \\
Gs & 0.68 & 0.60 & 0.68 & 1.00 \\
\hline
\end{tabular}

Table 4. Residual correlations of first-order factors
\begin{tabular}{lcccc}
\hline & Gf & Gc & Gsm & Gs \\
\hline Gf & & & & \\
Gc & 0.02 & & & \\
Gsm & -0.04 & 0.01 & & \\
Gs & 0.03 & -0.04 & 0.03 & \\
\hline
\end{tabular}

Table 5. Variances of first-order factors
\begin{tabular}{lccc}
\hline & \begin{tabular}{c} 
Observed \\
Variance
\end{tabular} & \begin{tabular}{c} 
Residual \\
Variance
\end{tabular} & \(R^{2}\) \\
\hline Gc & 4.81 & 1.60 & 0.67 \\
Gf & 4.00 & 0.53 & 0.87 \\
Gsm & 3.87 & 0.55 & 0.86 \\
Gs & 3.16 & 1.46 & 0.54 \\
\hline
\end{tabular}

Schmid-Leiman Transformation (Schmid \& Leiman, 1957) developed a transformation of the higher-order factor model to yield uncorrelated first-order factors that represent both the second-order and the first-order factors. This transformation of the factor loadings makes them reflect the incremental influence of both general and specific abilities on the indicator variable. As this procedure just transforms the higher order factor model, the "fit" of both models will be identical (Yung, Thissen, \& McLeod, 1999).

The Schmid-Leiman (S-L) transformation can be used to estimate the direct impact of \(g\) and the first-order constructs on the subtests. You can calculate the factor loadings of the manifest subtest scores on \(g\) and the first order factors using Wright's (Wright, 1934, 1968) rules as was done in the previous section. This would be tedious to do by hand for each indicator, but can be carried out efficiently using matrices following the steps outlined in (Gorsuch, 1983) (see Figure 6 ).
- Exploratory Factor Models
1. Conduct an EFA of the \(m \mathrm{MVs}\), extracting \(p\) factors with an oblique rotation.
(a) Save the \(m \times p\) first-order factor loading matrix, \(\boldsymbol{\Lambda}_{1}\).
(b) Save the \(p \times p\) first-order inter-factor correlation matrix, \(\boldsymbol{\Phi}_{1}\).
2. Using \(\boldsymbol{\Phi}_{1}\), conduct an EFA and extract the second order factor.
(a) Save the \(p \times 1\) second-order factor loading matrix, \(\boldsymbol{\Lambda}_{2}\).
(b) Save the \(p \times 1\) second-order factor uniquenesses, \(\mathbf{u}_{2}^{2}\).
3. Create a \(p \times p\) diagonal matrix using the square root of \(\mathbf{u}_{2}^{2}, \mathbf{d}^{*}=\operatorname{tr}\left(\mathbf{u}_{2}\right) \mathbf{I}\).
4. Create an \(p \times p+1\) augmented matrix, \(\mathbf{A}\), where \(\mathbf{A}=\left[\mathbf{\Lambda}_{2} \mid \mathbf{d}^{*}\right]\).
5. Estimate the \(m \times p+1\) matrix of factor loadings for the second- and firstorder factors by multiplying \(\boldsymbol{\Lambda}_{1}\) by \(\mathbf{A}, \boldsymbol{\Lambda}_{S L}=\boldsymbol{\Lambda}_{1} \mathbf{A}\).
- Confirmatory Factor Models
1. Fit a second-order factor model, which will give \(\boldsymbol{\Lambda}_{1}, \boldsymbol{\Phi}_{1}, \boldsymbol{\Lambda}_{2}\), and \(\mathbf{u}_{2}^{2}\).
2. Create a \(p \times p\) diagonal matrix using the square root of \(\mathbf{u}_{2}^{2}\), \(\mathbf{d}^{*}=\operatorname{tr}\left(\mathbf{u}_{2}\right) \mathbf{I}\).
3. Create an \(p \times p+1\) augmented matrix, \(\mathbf{A}\), where \(\mathbf{A}=\left[\mathbf{\Lambda}_{2} \mid \mathbf{d}^{*}\right]\).
4. Estimate the \(m \times p+1\) matrix of factor loadings for the second- and firstorder factors by multiplying \(\boldsymbol{\Lambda}_{1}\) by \(\mathbf{A}, \boldsymbol{\Lambda}_{S L}=\boldsymbol{\Lambda}_{1} \mathbf{A}\).

Figure 6. Steps for Conducting the Schmid-Leiman Transformation.

The psych package (Revelle, 2012) has the schmid () function that will conduct the S-L transformation in a EFA context (see also the bi-factor rotation in the GPArotation package (Bernaards \& Jennrich, 2005; Jennrich \& Bentler, 2011)). The syntax below will complete the S-L transformation using the output from the second-order CFA model.
```

1 \#Residual variances
2> U2<-diag(c(.332, .135, .141, .467))
3> U<-sqrt (U2)
4> rownames (U) <-colnames (U) <-c("gc","gf", "gsm", "gs")
5> \#First Order loadings
6> Loadings<-matrix(0, ncol=4, nrow=10)
7> colnames(Loadings)<-c ("gc","gf", "gsm", "gs")
8> rownames(Loadings)<-c("Comprehension", "Information", "Similarities", "
Vocabulary", "Matrix.Reasoning", "Picture.Concepts", "Digit.Span", "
Letter.Number", "Coding", "Symbol.Search")
9> Loadings[1:4,1]<-c(0.762, 0.846, 0.844, 0.885) \#Gc loadings
10> Loadings[5:6,2]<-c(0.689, 0.566) \#Gf loadings
11> Loadings[7:8,3]<-c(0.661, 0.772) \#Gsm loadings
12> Loadings[9:10,4]<-c(0.599, 0.818) \#Gs loadings
13> \#Second-order loadings
14> Higher.Loadings<-matrix(c(.818,.930, .927, . 730),ncol=1)
15> colnames(Higher.Loadings)<-"g"
16> rownames(Higher.Loadings)<-c("gc","gf", "gsm", "gs")
17> A<-cbind(Higher.Loadings,U)
18>
19> \#S-L transformed matrix
20> Loadings%*%A

| 21 | g | $g c$ | $g f$ | $g s m$ | $g s$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 22 Comprehension | 0.623316 | 0.4390601 | 0.0000000 | 0.0000000 | 0.0000000 |
| 23 Information | 0.692028 | 0.4874605 | 0.0000000 | 0.0000000 | 0.0000000 |
| 24 Similarities | 0.690392 | 0.4863081 | 0.0000000 | 0.0000000 | 0.0000000 |
| 25 Vocabulary | 0.723930 | 0.5099321 | 0.0000000 | 0.0000000 | 0.0000000 |
| 26 Matrix.Reasoning | 0.640770 | 0.0000000 | 0.2531548 | 0.0000000 | 0.0000000 |
| 27 Picture.Concepts | 0.526380 | 0.0000000 | 0.2079617 | 0.0000000 | 0.0000000 |
| 28 Digit.Span | 0.612747 | 0.0000000 | 0.0000000 | 0.2482053 | 0.0000000 |
| 29 Letter. Number | 0.715644 | 0.0000000 | 0.0000000 | 0.2898857 | 0.0000000 |
| 30 Coding | 0.437270 | 0.0000000 | 0.0000000 | 0.0000000 | 0.4093410 |
| 31 Symbol. Search | 0.597140 | 0.0000000 | 0.0000000 | 0.0000000 | 0.5589999 |

```

The S-L transformation orthogonalizes the relationship between the higher-order and lower-order factors. That is, first the highest order factor solution is determined, then the next highest order is determined based on the variance orthogonal to the highest order. Moreover, the S-L factors are proportionality constrained. This constraint affects the proportion of variance in the subtest scores explained by general and specific ability constructs. Specifically, for a given set of subtests, the ratios of variance attributable to the respective first-order ability to variance attributable to \(g\) are constrained to be the same. For example, the standardized factor loadings on the first order factor for Comprehension is .762 and for Information is .846 . The standardized factor loadings of these subtests on \(g\) are \(.762 \times .818=.623\) and \(.846 \times .818=.692\), respectively. The variance ratio for the Comprehension subtest is \(\frac{.762^{2}}{.623^{2}}=1.50\) and for Information is \(\frac{.846^{2}}{.692^{2}}=1.50\)

\subsection*{2.4. Hierarchical Model}

An alternative to the higher-order model is a hierarchal model, which specifies that all the factors are first-order factors, only some of these first order factors are more general than others (Rindskopf \& Rose, 1988). Sometimes hierarchical models are called a bi-factor models or nested-factor models (Chen, West, \& Sousa, 2006; Brunner et al., 2012; Mulaik \& Quartetti, 1997).
(Chen et al., 2006) write that hierarchal models should be investigated when (a) there is a general factor that is hypothesized to account for the commonality of the items; (b) there are multiple domain specific factors, each of which is hypothesized to account for the unique influence of the specific domain over and above the general factor; or \((c)\) interest is in the domain specific factors as well as the common factor. They further argue that a hierarchal model is often better than a higher-order model as hierarchical models (a) can be used to study the role of domain specific factors that are independent of the general factor; (b) allow for the direct examination of the strength of the relationship between the first-order factors and their associated indicator variables via the factor loadings, whereas such relationships cannot be directly examined in the second-order factor models. (c) can be useful in testing whether a first-order factor predict external variables, over and above the general factor, as the domain specific factors are directly represented as independent factors; and (d) allow for the testing of measurement invariance of the domain specific factors, in addition to the general factor, whereas the second-order model only allows for invariance in the secondorder factor to be directly tested for invariance because the first-order factors are represented by disturbances.

An example of a hierarchical model is shown in Figure 7. Notice that \(g, G c, G f, G s m\), and \(G s\) are all first-order factors, but that \(g\) is uncorrelated with the other factors. Thus, this model is similar to the S-L transformation, but here there are no proportionality constraints. The syntax given below is for a hierarchical model with uncorrelated domain specific factors, but a more general model could allow them to be correlated (Rindskopf \& Rose, 1988).

The specification of the hierarchical model in lavaan is
```

1 \#\# Hierarchical model
WISC.hierarchical.model<-'
gc =~ Comprehension + Information + Similarities + Vocabulary
gf =~ a*Matrix.Reasoning + a*Picture.Concepts
gsm =~ b*Digit.Span + b*Letter.Number
gs =~ c*Coding + c*Symbol.Search
g=~ Comprehension + Information + Matrix.Reasoning + Picture.Concepts +
Similarities + Vocabulary + Digit.Span + Letter.Number + Coding +
Symbol.Search
8g~~0*gc + 0*gf + 0*gsm + 0*gs
9gc ~~ 0*gf + 0*gsm + 0*gs
0gf ~~ 0*gsm + 0*gs
11 gsm ~ ~ 0*gs
12'

```

Lines 1-3 and 7 are very similar to the other models specified in this chapter. Lines 4-6 and lines 8-11 are different, though. Lines 4-6 specify that for Gs, Gsm, and Gs, both indicator variables are pre-multiplied by the same label, which constrains the parameter estimate to be the same (see Section 3. for more information on constriants). This has to be


Figure 7. Hierarchical Model of the WISC-IV Subtests.
done for these latent variables or the model would be empirically underidentified (Kenny, 1979; Rindskopf, 1984).

The default in lavaan is for all exogenous variables to be correlated with each, so line 8 tells lavaan that \(g\) needs to be uncorrelated with \(G c, G f, G s m\) and \(G s\), line 9 specifies that \(G c\) need to be uncorrelated with \(G f, G s m\) and \(G s\), and so on. Notice that, for each variable, the parameter constraints are done through one statement instead of separate ones. The left hand side of the double tilde specifies one of the variables and the multiple + signs on the right hand side of the double tilde means that the the constraints are all going to apply to a variable's relationship with the variable of the left hand side.

The syntax to estimate the model's parameters and calculate the fit indices is the same as with the previous models, only replacing the model argument.
```

1> WISC.hierarchical.fit<-cfa(model=WISC.hierarchical.model, sample.cov=
WiscIV.cov, sample.nobs=550, std.lv=TRUE)
2 > summary(WISC.hierarchical.fit, fit.measure=TRUE, standardized=TRUE)
3 lavaan (0.5-9) converged normally after 48 iterations
4
5 Number of observations 550
6
7 Estimator ML
8 Minimum Function Chi-square 50.345
9 Degrees of freedom 28
10 P-value 0.006
1 1
12Chi-square test baseline model:
1 3
14 Minimum Function Chi-square 2552.014
15 Degrees of freedom 45
16 P-value 0.000
1 7
18Full model versus baseline model:
19
20 Comparative Fit Index (CFI) 0.991
2 1 Tucker-Lewis Index (TLI) 0.986
2 2
23 Loglikelihood and Information Criteria:
24
25 Loglikelihood user model (HO) -12563.645

```

26 Loglikelihood unrestricted model (H1) -12538.472
27
28 Number of free parameters
27
29 Akaike (AIC)
30 Bayesian (BIC)
25181.290

31 Sample-size adjusted Bayesian (BIC) 25211.948
32
33 Root Mean Square Error of Approximation:
34
\begin{tabular}{llll}
35 & RMSEA & & 0.038 \\
36 & 90 Percent Confidence \\
37 & P-val
\end{tabular}

37 P-value RMSEA <= 0.05
0.873

38
39 Standardized Root Mean Square Residual:
40
41 SRMR 0.022
42
43 Parameter estimates:
44
45 Information Expected
46 Standard Errors Standard
47
48 Estimate Std.err Z-value \(P(>|z|)\) Std.lv Std.all
49 Latent variables:
\(50 \mathrm{gc}=\)
51 Comprhnsn
52 Informatn
Similarts
Vocabulry \(\mathrm{gf}=\sim\)

Mtrx.Rsn
0.004
0.635
0.220

Pctr.Cncp
Dig
(b)
0.867
\(0.163 \quad 5.321 \quad 0.000\)
0.867
0.291

Lttr.Nmbr
(b)
0.867
0.163
5.321
0.000
0.867
0.290 gs =~
62 Coding
(c) 1.460
\(0.114 \quad 12.794 \quad 0.000\)
1.460
0.494

Symbl.Src
(c)
\(1.460 \quad 0.114\)
\(12.794 \quad 0.000\)
1.460
0.468
\begin{tabular}{rrrrrr}
1.709 & 0.127 & 13.496 & 0.000 & 1.709 & 0.594 \\
2.190 & 0.124 & 17.674 & 0.000 & 2.190 & 0.728 \\
1.882 & 0.121 & 15.502 & 0.000 & 1.882 & 0.652 \\
1.568 & 0.132 & 11.898 & 0.000 & 1.568 & 0.527 \\
2.131 & 0.126 & 16.862 & 0.000 & 2.131 & 0.704 \\
2.135 & 0.126 & 16.961 & 0.000 & 2.135 & 0.708 \\
1.792 & 0.129 & 13.844 & 0.000 & 1.792 & 0.602 \\
2.112 & 0.123 & 17.105 & 0.000 & 2.112 & 0.707 \\
1.280 & 0.133 & 9.614 & 0.000 & 1.280 & 0.433 \\
1.864 & 0.133 & 14.056 & 0.000 & 1.864 & 0.598
\end{tabular}

75
76 Covariances:
77 gc ~~
\begin{tabular}{llll}
78 & g \\
79 & gf \\
80 & 0.000 & 0.000 & 0.000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 82 & g & \multicolumn{2}{|l|}{0.000} & 0.000 & 0.000 \\
\hline 83 & gs & & & & \\
\hline 84 & 9 & \multicolumn{2}{|l|}{0.000} & 0.000 & 0.000 \\
\hline 85 & \multicolumn{3}{|l|}{gc} & & \\
\hline 86 & gf & \multicolumn{2}{|l|}{0.000} & 0.000 & 0.000 \\
\hline 87 & gsm & \multicolumn{2}{|l|}{0.000} & 0.000 & 0.000 \\
\hline 88 & gs & \multicolumn{2}{|l|}{0.000} & 0.000 & 0.000 \\
\hline \multicolumn{6}{|l|}{89 gf} \\
\hline 90 & gsm & \multicolumn{2}{|l|}{0.000} & 0.000 & 0.000 \\
\hline 91 & gs & \multicolumn{2}{|l|}{0.000} & 0.000 & 0.000 \\
\hline 92 & gsm ~ & & & & \\
\hline 93 & gs & \multicolumn{2}{|l|}{0.000} & 0.000 & 0.000 \\
\hline \multicolumn{6}{|l|}{94} \\
\hline \multicolumn{6}{|l|}{95 Variances:} \\
\hline 96 & Comprehension & 3.330 & 0.251 & 3.330 & 0.402 \\
\hline 97 & Information & 2.661 & 0.202 & 2.661 & 0.294 \\
\hline 98 & Similarities & 2.735 & 0.212 & 2.735 & 0.298 \\
\hline 99 & Vocabulary & 1.783 & 0.208 & 1.783 & 0.196 \\
\hline 100 & Matrix.Resnng & 4.393 & 0.384 & 4.393 & 0.527 \\
\hline 101 & Pictur. Cncpts & 6.004 & 0.444 & 6.004 & 0.677 \\
\hline 102 & Digit. Span & 4.902 & 0.381 & 4.902 & 0.553 \\
\hline 103 & Letter.Number & 3.711 & 0.345 & 3.711 & 0.416 \\
\hline 104 & Coding & 4.977 & 0.409 & 4.977 & 0.569 \\
\hline 105 & Symbol. Search & 4.110 & 0.392 & 4.110 & 0.423 \\
\hline 106 & gc & 1.000 & & 1.000 & 1.000 \\
\hline 107 & gf & 1.000 & & 1.000 & 1.000 \\
\hline 108 & gsm & 1.000 & & 1.000 & 1.000 \\
\hline 109 & gs & 1.000 & & 1.000 & 1.000 \\
\hline 110 & g & 1.000 & & 1.000 & 1.000 \\
\hline
\end{tabular}

All of the fit indices indicate that this model fits the data fairly well, and arguably better than the other models of this data.

One nice feature of the hierarchical model that the higher-order model does not have is that it can be used to test if the domain specific factors (i.e., Gf, Gc, Gsm, Gs) explain any additional variance above and beyond the general factor, (i.e, \(g\) ) by removing the domain specific factors from the model and examining how it fits the data. For example, the results from the hierarchical model indicate that factor loadings for the Gf and Gsm are relatively small (standardized loadings \(<0.30\) ), so we can fit a model without these factors.
```

1> WISC.hierarchical2.model<-'
2 + gc =~ Comprehension + Information + Similarities + Vocabulary
3+ gs =~ c*Coding + c*Symbol.Search
4+
5 + g=~ Comprehension + Information + Matrix.Reasoning + Picture.Concepts +
Similarities + Vocabulary + Digit.Span + Letter.Number + Coding +
Symbol.Search
6+ g~~0*gc + 0*gs
7+gc ~~ 0*gs
8+ '
9>
1 0 > ~ W I S C . h i e r a r c h i c a l 2 . f i t < - c f a (m o d e l = W I S C . h i e r a r c h i c a l 2 . m o d e l , ~ s a m p l e . c o v =
WiscIV.cov, sample.nobs=550, std.lv=TRUE)
11> summary(WISC.hierarchical2.fit, fit.measure=TRUE, standardized=TRUE)

```
```

lavaan (0.5-9) converged normally after 36 iterations
1 4 Number of observations 550
1 6 Estimator ML
1 7 Minimum Function Chi-square 60.949
1 8 Degrees of freedom 30
1 9 ~ P - v a l u e ~ 0 . 0 0 1 ~
21 Chi-square test baseline model:
23 Minimum Function Chi-square 2552.014
2 4 ~ D e g r e e s ~ o f ~ f r e e d o m ~ 4 5 ~

```

```

2 7 Full model versus baseline model:
2 9 ~ C o m p a r a t i v e ~ F i t ~ I n d e x ~ (C F I) ~ 0 . 9 8 8 ~
30 Tucker-Lewis Index (TLI) 0.981
32 Loglikelihood and Information Criteria:
3
3 4 ~ L o g l i k e l i h o o d ~ u s e r ~ m o d e l ~ (H O) ~ - 1 2 5 6 8 . 9 4 7 ~
35 Loglikelihood unrestricted model (H1) -12538.472
36
3 7 Number of free parameters 25
38 Akaike (AIC) 25187.894
39 Bayesian (BIC) 25295.642
4 0 ~ S a m p l e - s i z e ~ a d j u s t e d ~ B a y e s i a n ~ (B I C) ~ 2 5 2 1 6 . 2 8 1 ~
4 2 Root Mean Square Error of Approximation:
4 4 ~ R M S E A ~ 0 . 0 4 3 ~
45 90 Percent Confidence Interval 0.027 0.059
46 P-value RMSEA <= 0.05 0.744
4
4 8 Standardized Root Mean Square Residual:
4 9
5 0 ~ S R M R ~ 0 . 0 2 3 ~
5 1
5 2 ~ P a r a m e t e r ~ e s t i m a t e s :
5 3
5 4 Information Expected
55 Standard Errors
Standard
Z-value P(>|z|)
Latent variables:
gc =~
Comprhnsn

1.435	0.125	11.516	0.000
1.337	0.119	11.228	0.000
1.436	0.121	11.896	0.000
1.694	0.115	14.734	0.000
1.460	0.113	12.905	0.000
1.460	0.113	12.905	0.000

 1.435 0.499
 1.435-125-11.516-0.000
 Informatn 1.337 0.119 11.228 0.000 1.337 0.445
 Similarts 1.436 0.121 11.896 0.000 1.436 0.474
 Vocabulry 1.694 0.115 14.734 0.000 1.6 1.64 0.561
 gs =~
 | Coding ($~(~$ | 1.460 | 0.113 | 12.905 | 0.000 | 1.460 | 0.494 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
13
15
20
22
26
28
31
41
43
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 67 & \(g=\sim\) & & & & & & \\
\hline 68 & Comprhnsn & 1.695 & 0.124 & 13.625 & 0.000 & 1.695 & 0.589 \\
\hline 69 & Informatn & 2.140 & 0.122 & 17.472 & 0.000 & 2.140 & 0.712 \\
\hline 70 & Mtrx.Rsnn & 1.873 & 0.119 & 15.699 & 0.000 & 1.873 & 0.649 \\
\hline 71 & Pctr.Cncp & 1.592 & 0.128 & 12.414 & 0.000 & 1.592 & 0.535 \\
\hline 72 & Similarts & 2.092 & 0.125 & 16.780 & 0.000 & 2.092 & 0.691 \\
\hline 73 & Vocabulry & 2.106 & 0.124 & 17.009 & 0.000 & 2.106 & 0.698 \\
\hline 74 & Digit.Spn & 1.878 & 0.124 & 15.161 & 0.000 & 1.878 & 0.631 \\
\hline 75 & Lttr.Nmbr & 2.178 & 0.119 & 18.248 & 0.000 & 2.178 & 0.729 \\
\hline 76 & Coding & 1.285 & 0.132 & 9.738 & 0.000 & 1.285 & 0.435 \\
\hline 77 & Symbl.Src & 1.857 & 0.132 & 14.106 & 0.000 & 1.857 & 0.596 \\
\hline \multicolumn{8}{|l|}{78} \\
\hline \multicolumn{8}{|l|}{79 Covariances:} \\
\hline \multicolumn{8}{|l|}{80 gc} \\
\hline 81 & g & 0.000 & & & & 0.000 & 0.000 \\
\hline 82 & gs & & & & & & \\
\hline 83 & g & 0.000 & & & & 0.000 & 0.000 \\
\hline 84 & gc & & & & & & \\
\hline 85 & gs & 0.000 & & & & 0.000 & 0.000 \\
\hline \multicolumn{8}{|l|}{86} \\
\hline \multicolumn{8}{|l|}{87 Variances:} \\
\hline 88 & Comprehension & 3.346 & 0.248 & & & 3.346 & 0.404 \\
\hline 89 & Information & 2.677 & 0.204 & & & 2.677 & 0.296 \\
\hline 90 & Similarities & 2.727 & 0.213 & & & 2.727 & 0.298 \\
\hline 91 & Vocabulary & 1.799 & 0.204 & & & 1.799 & 0.198 \\
\hline 92 & Coding & 4.963 & 0.408 & & & 4.963 & 0.567 \\
\hline 93 & Symbol. Search & 4.139 & 0.391 & & & 4.139 & 0.426 \\
\hline 94 & Matrix.Resnng & 4.828 & 0.341 & & & 4.828 & 0.579 \\
\hline 95 & Pictur. Cncpts & 6.331 & 0.415 & & & 6.331 & 0.714 \\
\hline 96 & Digit. Span & 5.336 & 0.371 & & & 5.336 & 0.602 \\
\hline 97 & Letter.Number & 4.179 & 0.328 & & & 4.179 & 0.468 \\
\hline 98 & gc & 1.000 & & & & 1.000 & 1.000 \\
\hline 99 & gs & 1.000 & & & & 1.000 & 1.000 \\
\hline 100 & g & 1.000 & & & & 1.000 & 1.000 \\
\hline
\end{tabular}

While difference in \(\chi\) - square is moderately large ( \(\chi_{d f=1}^{2}=10.60, p=.01\) ), none of the other measures of model fit are appreciably different between the two models. Moreover, the change in \(R^{2}\) values for the four subtests affected by the removal of the two factors (Matrix Reasoning, Picture Concepts, Digit Span, and Letter-Number Sequencing) only change by \(.04-.05\) units. Consequently, it appears that the covariance among the \(G f\) and \(G s m\) subtests are mostly explained by \(g\), alone.

\section*{3. Behavior Genetic Analysis}

Behavior genetics is the study of the genetic and environmental influences on psychological traits (Plomin, DeFries, McClearn, \& McGuffin, 2008). It can answer many questions that traditional research designs cannot, such as the interaction of genotype with sex, age and lifestyle factors, cultural transmission, genetic and environmental stability over time, and the causes of co-morbidity between traits and diseases (Boomsma, Busjahn, \& Peltonen, 2002). Traditionally, these analysis have used "natural experiments" to study these relationships (Rutter, 2007), such as twins reared in differing environments (Bouchard, 1991)
and adoption studies (Jensen, 1997), as well as the general study of sibling similarities and differences (Jensen, 1980; Dunn \& Plomin, 1992).

Initially, studies in this field used variations of regression models in conjunction with the kinship of individuals within the sample to partition the phenotypic variance into genetic and environmental components (DeFries \& Fulker, 1985; Falconer, 1960), and such models are still used (Lynch \& Walsh, 1998; Falconer \& Mackay, 1996). With the advent of more powerful computers and data analysis programs, the field has moved to using latent variable models for much of its analyses (Neale \& Maes, 1992). That trend is especially evident by the development of the the \(M x\) program (Neale, Boker, Xie, \& Maes, 2003) and its translation into the R language via OpenMx (Boker et al., 2011).

The use of latent variable models for behavioral genetic data requires two extensions from the models this chapter has covered thus far. First, the ability to estimate parameters for different groups concurrently, and, second, the ability to constrain parameter estimates within and between groups.

To input the data from multiple groups in lavaan, the data from the different groups needs to be combined into a single list. In \(R\), a list is a single objected made up of an ordered (and possibly named) collection of objects (technically called components). As an example, say we obtained Full Scale IQ (FSIQ) scores in a set of monozygotic (MZ) and dizygotic (DZ) twins. The correlation of the scores between the MZ twins was .86 , but for the DZ the correlation was 60 ((Bouchard \& McGue, 1981) p. 1056). To enter both datasets in R as a list, first we need to enter the correlation matrices for the MZ and DZ twins, separately.
```

1>MZ.cor<-matrix (c (1,.86,.86,1),nrow=2)
2> DZ.cor<-matrix (c (1,.60,.60,1),nrow=2)

```

Then, we need to name the rows and columns in each matrix
```

1> rownames(MZ.cor)<-c("P1", "P2")
2 > colnames(MZ.cor)<-c("P1", "P2")
3> rownames(DZ.cor)<-c("P1", "P2")
4> colnames(DZ.cor)<-c("P1", "P2")

```
where "P1" stands for the measured phenotype from twin 1 , and " \(P 2\) " stands for the measured phenotype from twin 2.

Assuming the standard deviation is 15 and does not differ between groups (KoeppenSchomerus, Spinath, \& Plomin, 2003), lavaan's cor \(2 \operatorname{cov}()\) function can convert each correlation matrix to a covariance matrix.
```

1> DZ.cov<-cor2cov(DZ.cor, c(15,15))
2>MZ.cov<-cor2cov(MZ.cor, c(15,15))

```

To combine the two matrices into a list, use the list () function.
```

1 sib.cov<-list(MZ=MZ.COV,DZ=DZ.cov)

```

In the previous syntax, the list components were entered in the form of name=object. Giving the list elements names will help in parameter interpretation, as lavaan will use the names in the summary () output.

To examine a list in the R console, type the list's name.
```

1> sib.cov
2 \$MZ
3 P1 P2
P1 225.0 193.5
P2 193.5 225.0
6
\$DZ
P1 P2
P1 225 135
10 P2 135 225

```

The same syntax can be used to enter the twin groups' sample sizes, although the data can be entered as scalars (i.e., one-dimensional matrices) instead of a matrix.
```

1> sib.n<-list(MZ=4672,DZ=5546)
2
3> sib.n
4 \$MZ
5 [1] 4672
6
7 \$DZ
8[1] 5546

```

Because the covariances from both groups are combined into a single list object, the lavaan syntax to estimate the parameters the will look the same as with the other CFA models, e.g., cfa(model, sample.cov=sib.cor, sample.nobs=sib.n). The only thing left to do is to specify the model. In order to do so, though, certain parameters need constrained.

Constraining parameters in lavaan can take one of two forms. First, to constrain a parameter to a specific value, just premultiply the parameter by that value, e.g., \(g\) \(=\sim 3 *\) Comprehension. To constrain a parameter estimate to be the same for \(m>1\) groups, then the constrained parameter needs to have the same label in all the groups. This can be done in one of two ways. The first way is by specifying \(m\) separate models and giving the parameters to be constrained the same label. The second way is by specifying one model, but using R's concatenate function, c (), to apply multiple labels, e.g., for two groups: \(g=c(a, a) *\) Comprehension.

\subsection*{3.1. Behavior Genetic Models}

\subsection*{3.1.1. Twin Models}

Behavior genetic models can be quite complex, depending the degree(s) of kinship present in the data, as well as the number of phenotypes (i.e., observable behavior) measured. For the "classic" model though, we will assume there is just one phenotype measured in both MZ and DZ twins. (For some multivariate extensions of this model, see, e.g. (Loehlin, 2004; Neale et al., 2003)). The genetic influence on the phenotype can be decomposed into (a) additive effects of alleles at various loci, (b) dominance effects of alleles at various loci, and (c) epistatic interactions between loci (Plomin et al., 2008). Often with human samples, epistatic and dominance effects are confounded, so are lumped into a single nonadditive genetic effects category. The environmental influence on the phenotype can be
decomposed into (a) effects due to a shared environment, such as being raised by the same parents in the same house (aka "between-family" effects); and (b) effects due to an unshared environment, such as having different peers or attending different schools (aka "withinfamily" effects). These unshared effects also include random environmental events, such as getting into automobile accident, as well as random measurement events (i.e, measurement error).

For relatives \(i\) and \(j\), their phenotypes, \(P_{i}\) and \(P_{j}\), are assumed to be a linear function of the additive genetic influence ( \(A_{i}\) and \(A_{j}\) ), non-additive influence ( \(D_{i}\) and \(D_{j}\) ), shared environmental influence ( \(C_{i}\) and \(C_{j}\) ) and unshared environmental variance ( \(E_{i}\) and \(E_{j}\) ). Thus,
\[
\begin{align*}
& P_{1}=a_{1} A_{1}+d_{1} D_{1}+c_{1} C_{1}+e_{1} E_{1} \\
& P_{2}=a_{2} A_{2}+d_{2} D_{2}+c_{2} C_{2}+e_{2} E_{2} \tag{2}
\end{align*}
\]

For a given set of twins, the influences of \(\mathrm{A}, \mathrm{C}, \mathrm{D}\), and E are not expected to differ. That is, we would not expect, say, the additive genetic influence estimates ( \(a_{1}\) and \(a_{2}\) ) or the unshared environmental influence estimates ( \(e_{1}\) and \(e_{2}\) ) to differ. Thus, Equation 2 can be simplified to
\[
\begin{align*}
P_{1} & =a A_{1}+d D_{1}+c C_{1}+e E_{1} \\
P_{2} & =a A_{2}+d D_{2}+c C_{2}+e E_{2} \tag{3}
\end{align*}
\]

If twins (no matter the zygosity) are reared together, the shared environment influence \((\mathrm{C})\) is going to be the same. Likewise, by its definition, the non-shared environment ( E ) is going to be completely different. From quantitative genetic theory, we know that for MZ twins, the genetic influence (i.e., A and D) on a trait will be the same for both twins. For DZ twins, on average, the additive genetic influence will only be \(1 / 2\) the same and the nonadditive genetic influence will be be \(1 / 4\) the same. \({ }^{1}\) From this information, we can build a path model showing the relationship on a given phenotype between two twin siblings, as is shown in Figure 8.

Using the labels in Figure 8, the expected correlations on the measured phenotype for MZ and DZ twins reared together are
\[
\begin{equation*}
M Z r_{P_{1}, P_{2}}=a^{2}+d^{2}+c^{2} \tag{4}
\end{equation*}
\]
and
\[
\begin{equation*}
D Z r_{P_{1}, P_{2}}=0.5 a^{2}+0.25 d^{2}+c^{2} \tag{5}
\end{equation*}
\]
respectively. The variance for the trait (for either sibling) is
\[
\begin{equation*}
\sigma_{P}^{2}=a^{2}+d^{2}+c^{2}+e^{2} \tag{6}
\end{equation*}
\]

Together, equations 4,5 , and 6 represent four unknown parameters ( \(a, b, c\) and \(d\) ), but use input from only three known statistics \(\left({ }_{M Z} r_{P_{1}, P_{2}},{ }_{D Z} r_{P_{1}, P_{2}}\right.\), and \(\left.\sigma_{P}^{2}\right)\). Thus, a "classic" twin design can only estimate three of the four parameters (Martin, Eaves, Kearsey, \&

\footnotetext{
\({ }^{1}\) This assumes random mating and that the additive genetic influence is uncorrelated with shared environmental or dominance influence.
}


Figure 8. ACDE Model.

Davies, 1978). To estimate all the parameters within the same model would require additional data (e.g., twins separated at birth, relatives of twins (Neale \& Maes, 1992)). Not all the parameters need to be estimated, however, if, say, the hypothesis is that only additive genetic components and random environmental events are influencing the phenotype. In fact, with twin designs it is typical to test the the following series of models that postulate different genetic and environmental components are influencing behavior: \(\mathrm{ACE}, \mathrm{ADE}, \mathrm{AE}\), CE and E (Maes, 2005).

Below is the lavaan syntax for the full ACDE model for a single measured variable, using MZ and DZ twins raised together. The model assumes the MZ twins are the first set of data entered into the R list. To estimate other models, just comment out the unnecessary parameters.
```

1 ACDE.model<-'
2 \#Latent Variables
3A1=~}NA*P1 + C (a,a)*P
4A2=~}NA*P2+C(a,a)*P
5C=~NA*P1 + C(C,C)*P1 + C (c,C)*P2
6D1 =~ NA*P1 + c(d,d)*P1
7D2 =~}NA*P2 + c(d,d)*P
8
9 \#Variances
10A1 ~ ~ 1*A1
11 A2 ~ ~ 1*A2
12 C ~ ~ 1*C
13 D1 ~ ~ 1*D1

```
```

14D2 ~ ~ 1*D2
15 P1 ~ c (e2,e2) *P1
16 P2 ~ c (e2,e2) *P2
1 7
18 \#covariances
19A1 ~~ C (1,.5)*A2 + 0*C + 0*D1 + 0*D2
20A2 ~ ~ 0*C + 0*D1 + 0*D2
21C ~~ 0*D1 + 0*D2
22 D1 ~ ~ C (1,.25)*D2
23'

```

Lines 3-6 define the latent variables \(A 1, A 2, C, D 1\), and \(D 2\) respectively. The c (a, a) *P1 syntax tells lavaan to use the label \(a\) for the parameter estimating the influence from A1 to P1 in both the MZ and DZ groups. As the parameter estimating the influence from A2 to P2 has the same label, lavaan will constrain it to be the same value as well. A similar interpretation follows for the other \(\mathrm{C}(\cdot) *\) terms.

This model does not create a E1 or E2 latent variable because, at least for a design with MZ and DZ twins raised together, these terms represent error/residual variance. Consequently, this model constrains the error variances to be the same for for the MZ and DZ twins (meaning \(e^{2}\) is estimated instead of \(e\)-lines 15-16). The estimate for \(e\) can be obtained via \(e=\sqrt{e^{2}}\).

Lines \(10-14\) constrain the variances of \(A 1, A 2\), and \(C\) to unity, while lines 19-22 constrain the correlation of both \(A\) variables with \(C\) and both \(D\) variables to zero. The correlation of all residual terms in lavaan are already constrained to zero; thus, there is no need to specify anything about \(E 1\) and \(E 2\) 's covariance. Lines 19 and 22 serve a dual purpose. In addition to making correlations equal zero, line 19 also constrains the between-twin \(A\) correlations to be 1 in the first group (MZ twins) and .5 in the second group (DZ twins). Likewise, line 22 constrains the between-twin \(D\) correlations to be 1 for MZ twins and .25 in DZ twins.

The results for the AE model are given below.
```

> AE.fit<-cfa(AE.model, sample.cov=sib.cov, sample.nobs=sib.n)
> summary(AE.fit, fit.measures=TRUE, standardized=TRUE)
lavaan (0.5-9) converged normally after 27 iterations
Number of observations per group
MZ 4672
DZ 5546
Estimator ML
Minimum Function Chi-square 321.458
Degrees of freedom 4
P-value 0.000
Chi-square for each group:
16 MZ 11.971
17 DZ 309.487
19Chi-square test baseline model:
21 Minimum Function Chi-square 8761.454

```
13
15
18
20
```

2 2 Degrees of freedom 2
23 P-value
0.000
2 4
25 Full model versus baseline model:
26
27 Comparative Fit Index (CFI) 0.964
2 8 Tucker-Lewis Index (TLI) 0.982
29
30 Loglikelihood and Information Criteria:
3 1
3 2 ~ L o g l i k e l i h o o d ~ u s e r ~ m o d e l ~ (H 0) ~ - 8 0 1 1 7 . 1 4 3 ~
33 Loglikelihood unrestricted model (H1) -79956.414
34
35 Number of free parameters 2
36 Akaike (AIC) 160238.287
37 Bayesian (BIC)
38 Sample-size adjusted Bayesian (BIC) 160246.395
39
40 Root Mean Square Error of Approximation:
4 1

```

```

43 90 Percent Confidence Interval 0.113 0.136
44 P-value RMSEA <= 0.05 0.000
4 5
4 6 Standardized Root Mean Square Residual:
4 7
4 8 ~ S R M R ~ 0 . 0 8 5 ~
4 9
50 Parameter estimates:
5 1
5 2 ~ I n f o r m a t i o n ~ E x p e c t e d ~
5 3 Standard Errors Standard
5 4
55 Group 1 [MZ]:
56
5 7 ~ E s t i m a t e ~ S t d . e r r ~ Z - v a l u e ~ P (> \| z \|) ~ S t d . l v ~ S t d . a l l ~
58 Latent variables:
59 A1 =~
60 P1
(a)
0.091 148.344 0.000
13.570
0.927
61 A2 =~
62 P2
(a) 13.570
0.091 148.344
0.000
13.570
0.927
6 3
6 4 Covariances:
65 A1 ~ ~
66 A2
1.000
1.000 1.000
6 7
68 Variances:

69	A1		1.000		1.000
70	A2	1.000		1.0000	
71	P1	$(\mathrm{e} 2)$	29.930	0.611	29.930
72	P2	$(\mathrm{e} 2)$	29.930	0.611	29.930

73
7 4
75
76Group 2 [DZ]:

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{77} \\
\hline \multicolumn{3}{|l|}{78} & Estimate & Std.err & z-value & \(P(>|z|)\) & Std.lv & Std.all \\
\hline \multicolumn{9}{|l|}{79 Latent variables:} \\
\hline \multicolumn{9}{|l|}{80 A1 =~} \\
\hline 81 & P1 & (a) & 13.570 & 0.091 & 148.344 & 0.000 & 13.570 & 0.927 \\
\hline & A2 \(=\sim\) & & & & & & & \\
\hline 83 & P2 & (a) & 13.570 & 0.091 & 148.344 & 0.000 & 13.570 & 0.927 \\
\hline \multicolumn{9}{|l|}{84} \\
\hline \multicolumn{9}{|l|}{85 Covariances:} \\
\hline \multicolumn{9}{|l|}{86 A1} \\
\hline 87 & A2 & & 0.500 & & & & 0.500 & 0.500 \\
\hline \multicolumn{9}{|l|}{88} \\
\hline \multicolumn{9}{|l|}{89 Variances:} \\
\hline 90 & A1 & & 1.000 & & & & 1.000 & 1.000 \\
\hline 91 & A2 & & 1.000 & & & & 1.000 & 1.000 \\
\hline 92 & P1 & (e2) & 29.930 & 0.611 & & & 29.930 & 0.140 \\
\hline 93 & P2 & (e2) & 29.930 & 0.611 & & & 29.930 & 0.140 \\
\hline
\end{tabular}

The results look a little different than previous output. First, the model's parameter estimates are given in two separate sections, one for Group 1 and the other for Group 2. These groups are labeled MZ and DZ, respectively, because that is what we named them in the list () function. To get percent of variance in cognitive ability explained by additive genetic influences from AE model (i.e., the narrow heritability), square the standardized \(a\) term (i.e., the term in the Std. all column): \(a^{2}=.927^{2} \approx .86\). Likewise, the amount of variance explained by the unshared environment is \(e^{2}=.14\). These values should sum up to one, as they do in this model.

Table 6 has the fit values for all the models. The AE and CE models did not appear to fit the data very well, and the E model (i.e., the null model), fit the data horribly. The ADE model shows the exact same fit as the AE model, which normally would be odd, but can be explained by examining the estimated value for \(d: 0.00\). The fact that there was no dominance influence is not surprising, given that \(1 / 2\) of the MZ correlation \(\left(\frac{.86}{2}=.43\right)\) is less than the DZ twin correlation (.60) (Evans, Gillespie, \& Martin, 2002). Thus, it appears that the ACE model is the best fitting model of the five, and in fact the ACE model fit the data extremely well, as its estimated values for \(a, c\) and \(e\) were able to re-create the covariances perfectly.

Table 6. Goodness-of-fit statistics and parameter estimates for MZ and DZ twin models of cognitive ability
\begin{tabular}{lrccccccc}
\hline Model & \(\chi^{2}\) & \(d f\) & SRMR & RMSEA & \(a^{2}\) & \(c^{2}\) & \(e^{2}\) & \(d^{2}\) \\
\hline ACE & \(<0.00^{a}\) & 3 & 0.00 & 0.00 & 0.52 & 0.34 & 0.14 & - \\
AE & 321.46 & 4 & 0.09 & 0.13 & 0.86 & - & 0.14 & - \\
CE & 1329.95 & 4 & 0.07 & 0.26 & - & 0.72 & 0.28 & - \\
E & 8761.45 & 5 & 0.42 & 0.59 & - & - & 1.00 & - \\
ADE & 321.46 & 3 & 0.09 & 0.14 & 0.86 & - & 0.14 & 0.00 \\
\hline
\end{tabular}

Note. SRMR: standardized root mean square error; RMSEA: root mean square error of approximation.
\({ }^{a} \chi^{2}=0.000001843065\).

\subsection*{3.1.2. Non-Twin Sibling Models}

While twin data can be very powerful, it can be difficult to collect such data. Collecting sibling data, however, is much easier, and can also give interesting information about environmental influences (Plomin, 1994; Jensen, 1980), specifically the power of the shared and non-shared environment for a given trait (Turkheimer \& Waldron, 2000).

A non-twin sibling model for a single phenotype is shown in Figure 9. In such analyses, the goal is to examine the influence of shared versus non-shared environmental influences, so there are only two parameters estimated: \(e\) and \(c\). As with the twin models, \(e^{2}\) is the amount of variance explained by the non-shared environment, while \(c^{2}\) is the amount of variance explained by the shared environment. For an example of a multivariate non-twin sibling analysis, see, e.g., (Kretschmer \& Pike, 2010).


Figure 9. Univariate Sibling Analysis.
Some example data come from (Foong, Beaujean, Frisby, \& Knoop, 2012), who gathered cognitive ability information on a group of siblings \((n=17)\) in middle school using the Woodcock Johnson-Third Edition Tests of Cognitive Abilities (Woodcock, McGrew, \& Mather, 2001). For this data, the siblings were spilt by age into into older (Pl) and younger \((P 2)\) sibling categories. The lavaan syntax to input and name the covariance matrix is given below.
```

1 \#Sibling data
2 BIA.cov<-matrix(c(293.4706, 119.1287, 119.1287, 220.7574),ncol=2)
3 colnames (BIA.cov)<-rownames (BIA.cov)<-c("P1", "P2")

```

Specifying the model is very similar to the ACDE type models, only here we are just specifying the C and E components of that model.
```

1 sibling.model<-'
2 Shared =~ NA*P1 + C*P1 + C*P2
3P1 ~ ~ e2*P1
4P2~~ e2*P2
Shared~~1*Shared
6'

```

The results from this model are given below.
```

sibling.fit<-cfa(sibling.model, sample.cov=BIA.cov, sample.nobs=17)
summary(sibling.fit, standardized=TRUE)
lavaan (0.5-9) converged normally after 27 iterations
Number of observations17
Estimator ML
Minimum Function Chi-square 0.438
Degrees of freedom 1
P-value 0.508
Parameter estimates:
Information Expected
Standard Errors Standard
Latent variables:
Shared =~
P1 (lllllllll
llllllllll
Variances:
P1 (e2) 129.869 44.545 129.869 0.537
P2 (e2) 129.869 44.545 129.869 0.537
Shared 1.000 1.000 1.000

```

The results indicate that the model fit the data relatively well ( \(\chi^{2}=.438\) ). According to this model, the shared environment explains approximately \(46 \%\) of the variance (i.e., \(.681^{2}=.46\) ), while the unique environment explains approximately \(54 \%\) of the variance.

\section*{4. Conclusion}

This chapter has shown how R (R Development Core Team, 2011) can be a powerful tool in the analysis of latent variable models of cognitive ability data, specifically focussing on the lavaan (Rosseel, 2012) package, which is designed especially for structural equation modeling with latent variables. With such tools, the analysis of latent variables models can be accessible to any who are interested in such models. When added to fact that the only cost involved in using \(R\) is the time it takes to learn the language, it is easy to see why (Kelley, Lai, \& Wu, 2008) write that "there is no time like the present to begin incorporating R into one's set of statistical tools" (p. 569).

\section*{References}

Beaujean, AA. 2012. BaylorEdPsych: R package for Baylor University Educational Psychology quantitative courses (Version 0.5) BaylorEdPsych: R package for Baylor University Educational Psychology quantitative courses (Version 0.5) [Computer software]. Waco, TXBaylor University.

Bernaards, CA., \& Jennrich, RI. 2005. Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement655676-696. 10.1177/0013164404272507
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., Spies, J., Estabrook, R., Kenny, S., Bates, T., Mehta, P., \& Fox, J. 2011. OpenMx: An open source extended structural equation modeling framework OpenMx: An open source extended structural equation modeling framework. Psychometrika762306-317. 10.1007/s11336-010-9200-6
Boomsma, D., Busjahn, A., \& Peltonen, L. 2002. Classical twin studies and beyond Classical twin studies and beyond. Nature Reviews Genetics311872-882. 10.1038/nrg932
Bouchard, TJ. 1991. A twice-told tale: Twins reared apart A twice-told tale: Twins reared apart. In D. Cicchetti \& WM. Grove (Eds.), Thinking clearly about psychology: Essays in honor of Paul E. Meehl, Vol. 1: Matters of public interest Vol. 2: Personality and psychopathology. Thinking clearly about psychology: Essays in honor of Paul E. Meehl, Vol. 1: Matters of public interest Vol. 2: Personality and psychopathology. (p. 188-215). Minneapolis, MNUniversity of Minnesota Press.

Bouchard, TJ., \& McGue, M. 1981. Familial studies of intelligence: A review Familial studies of intelligence: A review. Science21244981055-1059. 10.1126/science. 7195071

Brunner, M., Nagy, G., \& Wilhelm, O. 2012. A tutorial on hierarchically structured constructs A tutorial on hierarchically structured constructs. Journal of Personality804796-846. 10.1111/j.1467-6494.2011.00749.x
Carroll, JB. 1993. Human cognitive abilities: A survey of factor-analytic studies Human cognitive abilities: A survey of factor-analytic studies. New YorkCambridge University Press.
Chen, FF., West, SG., \& Sousa, KH. 2006. A comparison of bifactor and second-order models of quality of life A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research412189-225. 10.1207/s15327906mbr41025
Cudeck, R. 1989. Analysis of correlation matrices using covariance structure models Analysis of correlation matrices using covariance structure models. Psychological Bulletin1052317-327. 10.1037/0033-2909.105.2.317
DeFries, JC., \& Fulker, DW. 1985. Multiple regression analysis of twin data Multiple regression analysis of twin data. Behavior Genetics155467-473. 10.1007/bf01066239
Dunn, J., \& Plomin, R. 1992. Separate lives: Why siblings sre so different Separate lives: Why siblings sre so different. New YorkWiley.
Evans, DM., Gillespie, NA., \& Martin, NG. 2002. Biometrical genetics Biometrical genetics. Biological Psychology611-233-51. 10.1016/s0301-0511(02)00051-0
Falconer, DS. 1960. Introduction to quantitative genetics Introduction to quantitative genetics. LondonOliver and Boyd.
Falconer, DS., \& Mackay, TFC. 1996. Introduction to quantitative genetics Introduction to quantitative genetics (4th ed.). Harlow, Essex, UKAddison Wesley Longman.
Foong, C., Beaujean, AA., Frisby, CL., \& Knoop, A. 2012. Environmental influence on mathematical reaction time: A sibling study. Manuscript submitted for publication Environmental influence on mathematical reaction time: A sibling study. Manuscript
submitted for publication.
Gorsuch, RL. 1983. Factor analysis Factor analysis. Hillsdale, NJLawrence Erlbaum.
Jennrich, R., \& Bentler, P. 2011. Exploratory bi-factor analysis Exploratory bi-factor analysis. Psychometrika764537-549. 10.1007/s11336-011-9218-4
Jensen, AR. 1980. Uses of sibling data in educational and psychological research Uses of sibling data in educational and psychological research. American Educational Research Journal172153-170. 10.2307/1162480
Jensen, AR. 1997. Adoption data and two g-related hypotheses Adoption data and two g-related hypotheses. Intelligence2511-6. 10.1016/s0160-2896(97)90003-9
Jensen, AR. 1998. The \(g\) factor: The science of mental ability The \(g\) factor: The science of mental ability. Westport, CTPraeger Publishers/Greenwood Publishing Group. Print
Kelley, K., Lai, K., \& Wu, PJ. 2008. Using R for data analysis: A best practice for research Using R for data analysis: A best practice for research. In JW. Osborne (Ed.), Best practices in quantitative methods Best practices in quantitative methods (p. 535-572). Thousand Oaks, CASage.
Kenny, DA. 1979. Correlation and causality Correlation and causality. New YorkJohn Wiley.
Koeppen-Schomerus, G., Spinath, FM., \& Plomin, R. 2003. Twins and non-twin siblings: Different estimates of shared environmental influence in early childhood Twins and non-twin siblings: Different estimates of shared environmental influence in early childhood. Twin Research and Human Genetics60297-105. doi:10.1375/twin.6.2.97
Kretschmer, T., \& Pike, A. 2010. Links between nonshared friendship experiences and adolescent siblings' differences in aspirations Links between nonshared friendship experiences and adolescent siblings' differences in aspirations. Journal of Adolescence331101-110. 10.1016/j.adolescence.2009.05.001
Loehlin, JC. 2004. Latent variable models: An introduction to factor, path, and structural equation analysis Latent variable models: An introduction to factor, path, and structural equation analysis (4th ed.). Mahwah, NJErlbaum.
Lynch, M., \& Walsh, B. 1998. Genetics and analysis of quantitative traits Genetics and analysis of quantitative traits. Sunderland, MASinauer.
Maes, HH. 2005. ACE Model ACE Model. In BS. Everitt \& DC. Howell (Eds.), Encyclopedia of Statistics in Behavioral Science. Encyclopedia of Statistics in Behavioral Science. John Wiley and Sons, Ltd.
Martin, NG., Eaves, LJ., Kearsey, MJ., \& Davies, P. 1978. The power of the classical twin study The power of the classical twin study. Heredity40197-116. 10.1038/hdy. 1978.10

McDonald, RP. 1989. An index of goodness-of-fit based on noncentrality An index of goodness-of-fit based on noncentrality. Journal of Classification6197-103. 10.1007/bf01908590

McDonald, RP. 2011. Measuring latent quantities Measuring latent quantities. Psychometrika764511-536. 10.1007/s11336-011-9223-7
Mulaik, SA., \& Quartetti, DA. 1997. First order or higher order general factor? First order or higher order general factor? Structural Equation Modeling: A Multidisciplinary Journal43193-211. 10.1080/10705519709540071

Neale, MC., Boker, SM., Xie, G., \& Maes, HH. 2003. Mx: Statistical modeling Mx:
Statistical modeling (6th ed.). Richmond, VAVirginia Commonwealth University. http://www.vipbg.vcu.edu/ vipbg/software/mxmanual.pdf
Neale, MC., \& Maes, HHM. 1992. Methodology for genetic studies of twins and families Methodology for genetic studies of twins and families. Dordrecht, The NetherlandsKluwer Academic Publishers.
Newton, JH., \& McGrew, KS. 2010. Introduction to the special issue: Current research in Cattell-Horn-Carroll-based assessment Introduction to the special issue: Current research in Cattell-Horn-Carroll-based assessment. Psychology in the Schools477621634. 10.1002/pits. 20495

Parkin, J., \& Beaujean, AA. 2012. The effects of Wechsler Intelligence Scale for ChildrenFourth Edition cognitive abilities on math achievement The effects of Wechsler Intelligence Scale for Children-Fourth Edition cognitive abilities on math achievement. Journal of School Psychology50113-128. 10.1016/j.jsp.2011.08.003
Plomin, R. 1994. The Emanuel Miller Memorial Lecture 1993: Genetic research and identification of environmental influences The Emanuel Miller Memorial Lecture 1993: Genetic research and identification of environmental influences. Journal of Child Psychology and Psychiatry355817-834. 10.1111/j.1469-7610.1994.tb02297.x
Plomin, R., DeFries, JC., McClearn, GE., \& McGuffin, P. 2008. Behavioral genetics Behavioral genetics (5th ed.). New YorkWorth.
R Development Core Team. 2011. R: A language and environment for statistical computing R: A language and environment for statistical computing. Vienna, AustriaR Foundation for Statistical Computing. Available from http://www.R-project.org.
Revelle, W. 2012. psych: Procedures for psychological, psychometric, and personality research (Version 1.2.4) [Computer software]. psych: Procedures for psychological, psychometric, and personality research (Version 1.2.4) [Computer software]. Evanston, ILNorthwestern University.
Rindskopf, D. 1984. Structural equation models: Empirical identification, Heywood cases, and related problems Structural equation models: Empirical identification, Heywood cases, and related problems. Sociological Methods and Research131109119. 10.1177/0049124184013001004

Rindskopf, D., \& Rose, T. 1988. Some theory and applications of confirmatory second-order factor analysis Some theory and applications of confirmatory second-order factor analysis. Multivariate Behavioral Research23151-67. 10.1207/s15327906mbr23013

Rosseel, Y. 2012. lavaan: An R package for structural equation modeling lavaan: An R package for structural equation modeling. Journal of Statistical Software4821-36.
Rutter, M. 2007. Proceeding from observed correlation to causal inference: The use of natural experiments Proceeding from observed correlation to causal inference: The use of natural experiments. Perspectives on Psychological Science24377-395. 10.1111/j.1745-6916.2007.00050.x

Schmid, J., \& Leiman, J. 1957. The development of hierarchical factor solutions The development of hierarchical factor solutions. Psychometrika22153-61. 10.1007/bf02289209

Spearman, CE. 1927. The abilities of man: Their nature and measurement The abilities of
man: Their nature and measurement. New YorkBlackburn Press.
Turkheimer, E., \& Waldron, MC. 2000. Nonshared environment: A theoretical, methodological and quantitative review Nonshared environment: A theoretical, methodological and quantitative review. Psychological Bulletin126178-108. 10.1037/00332909.126.1.78

Vance, A. 2009Jan 6. Data analysts captivated by R's power Data analysts captivated by R's power. New York Times.
Wechsler, D. 2003a. Wechsler intelligence scale for children Wechsler intelligence scale for children (4th ed.). San Antonio, TXThe Psychological Corporation.
Wechsler, D. 2003b. WISC-IV technical and interpretive manual WISC-IV technical and interpretive manual. San Antonio, TXThe Psychological Corporation.
Woodcock, RW., McGrew, KS., \& Mather, N. 2001. Woodcock-Johnson tests of cognitive abilities Woodcock-Johnson tests of cognitive abilities (3rd ed.). Itasca, ILRiverside.
Wright, S. 1934. The method of path coefficients The method of path coefficients. The Annals of Mathematical Statistics53161-215.
Wright, S. 1968. Evolution and the genetics of populations: Genetics and biometric foundations Evolution and the genetics of populations: Genetics and biometric foundations (Vol. 1). ChicagoUniversity of Chicago Press.
Yung, YF., Thissen, D., \& McLeod, LD. 1999. On the relationship between the higherorder factor model and the hierarchical factor model On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika642113128. 10.1007/bf02294531```


[^0]:    *E-mail address: Alex_Beaujean@baylor.edu
    ${ }^{\dagger}$ E-mail address: jrpzpf@mail.missouri.edu

[^1]:    1 WiscIV.cor<-matrix (NA, nrow=10, ncol=10) \#Create empty $10 \times 10$ matrix
    2 diag(WiscIV.cor)<-1 \#Place 1 s on the diagonal of each matrix
    3 \#Create the lower triangle of the matrix

[^2]:    1 > inspect (object=WISC.oneFactor.fit, what="rsquare")

