
Chapter 8

USING R FOR THE ANALYSIS OF COGNITIVE

ABILITY AND BEHAVIOR GENETIC DATA

Keywords: R, Cognitive Ability, Behavior Genetics, lavaan, Latent Variable Models

1. The R Program

1.1. Description

R (R Development Core Team, 2011) is a free, very flexible programming language, avail-

able for most operating systems (e.g., Windows, Mac, Linux). Thus, many professional

statisticians, university students and faculty, as well as businesses are turning to it for their

data analysis needs. The New York Times even published an article about R’s growing pop-

ularity (Vance, 2009).

R is currently maintained by the R core-development team (an international team of vol-

unteer developers), and the R Project’s web page is http://www.r-project.org (also known

as Comprehensive R Archive Network [CRAN]). This is the main site for R information,

directions for obtaining the software, accompanying packages, and some user documenta-

tion.

1.2. Installing R

You can download R by going to http://www.r-project.org/. Then, on the left-hand side,

click on CRAN and then select a mirror from the USA (unless you want to use R it a

different language). This will bring you to a page with links to download R for Linux, Mac,
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130 A. Alexander Beaujean and Jason Parkin

and Windows. Be sure to download the latest version.

There are GUIs for R , developed by third parties. A partial list can be

found at R Wiki (http://rwiki.sciviews.org/doku.php?id=guis:projects) and the R site (

http://www.sciviews.org/ rgui/). There are also many text editors that are either designed

to interact with R, or can be modified to do so. Typing in “R text editor” (or something

similar) into your favorite search engine will bring up many different text editor options, as

well as people’s opinons of the editors.

1.3. Starting R

If you use the interactive mode for R (as opposed to batch mode), when you initially start

it, something similar to the following syntax will automatically appear.

1 R version 2.15.0 (2012-03-30)

2 Copyright (C) 2012 The R Foundation for Statistical Computing

3 ISBN 3-900051-07-0

4 Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

5

6 R is free software and comes with ABSOLUTELY NO WARRANTY.

7 You are welcome to redistribute it under certain conditions.

8 Type ’license()’ or ’licence()’ for distribution details.

9

10 Natural language support but running in an English locale

11

12 R is a collaborative project with many contributors.

13 Type ’contributors()’ for more information and

14 ’citation()’ on how to cite R or R packages in publications.

15

16 Type ’demo()’ for some demos, ’help()’ for on-line help, or

17 ’help.start()’ for an HTML browser interface to help.

18 Type ’q()’ to quit R.

19

20 >

The > is called the prompt. It is not typed (if you type it, R will assume you mean

“greater than”). Instead, it is used to indicate where you are to type. For interactive mode

uses of R , you will type in all your commands at the > prompt. If a command is too long

to fit on a single line, a + is used for the continuation prompt. Another symbol that you

will use frequently in R is the left arrow, <-, which is R’s standard assignment operator

(another option is using =, but it is better to reserve using = when your are defining values

for arguments). The <- is R’s way of assigning whatever is on the right of the arrow to the

object on the left of the arrow.

The easiest way to begin to use R is as a calculator. For example:

1 > 2+2

2 [1] 4
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Using R for the Analysis of Cognitive Ability and Behavior Genetic Data 131

1.4. Functions

R stores variables, data, functions, results, etc, in the computer’s active memory in the form

of named objects. The user can then do actions on these objects with operators (arithmetic,

logical, comparison) and functions (which are themselves objects). Much of R use is done

through functions that you can apply to data or other objects. R functions are a set of

instructions that take your input, compute the desired value(s), and return the result. R

comes pre-loaded with a set of commonly used functions, but you can add additional ones

by either loading packages with the desired functions, or by writing your own function.

To use functions: (a) give the function’s name followed by parentheses; and (b) in the

parentheses, give the necessary values for the function’s argument(s). Here is an example

of a function to calculate the arithmetic mean, named ArithMean().

1 > #Gives the arithmetic mean

2 > ArithMean<-function(x) {

3 + Sx<-sum(x) #the sum() function is native to R

4 + Mean<- Sx/length(x) #the length() function is native to R

5 + return(Mean)

6 + }

7 > ArithMean(c(5,10,15)) #the c() function is is defined later

8 [1] 10

First, we told R to define the function named ArithMean(), which only takes one

argument, x (see line 2). The left brace, {, indicates where the text of the function is going

to start and the right brace, }, is placed at the end of the function (line 6). After defining the

function, line 7 gives the syntax to evaluate one call to it. Since the sum of the numbers in

the vector c(5,10,15) is 30, the length of the vector (i.e., the number of elements) is 3,

and the call to the function returned the value 10.

In the ArithMean() function, x is the formal argument, whereas in the call to func-

tion c(5,10,15) is the actual argument. The formal argument is a placeholder, but

c(5,10,15) is the value used in the computation. Sometimes R functions have default

arguments, which are values that a function’s arguments will automatically initialize unless

you specify a different value.

1.4.1. Useful R Functions

There are some very helpful R functions that you will use repeatedly.

• Comment. This is not really a function, but in R anything after the # sign is assumed

to be a comment and R will ignore it. Line 1 of the ArithMean() function was

a comment, which R ignored when reading that syntax. Comments are extremely

helpful “functions”, as annotating your R code can save you a lot of time and effort.

• Concatenate. The concatenate function, c(), will concatenate (i.e, join) the argu-

ments you include in the function. If you use the c() function in conjunction with

<-, you can assign whatever you are concatenating into a new object. For example, to

make a data set of 5 observations with the values 4, 5 3, 6, 9, and name it newData

you would use the following syntax.
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132 A. Alexander Beaujean and Jason Parkin

1 > newData<-c(4,5,3,6,9)

• Help. The help() function will obtain information about a function (or certain

special words or characters). You can also use a question mark, ?, as a shortcut for

the help function. For example, the following two lines of syntax will return the same

results.

1 > help(mean)

2

3 > ?mean

Thehelp() function returns a page that (at least) describes the function (or word/char-

acter), its arguments, and gives some examples of how to use the function. Some pages

have much more detail than others. If you just want to examine/run the example syntax for

a function, you can use the example() function.

1 > example(mean)

2

3 mean> x <- c(0:10, 50)

4

5 mean> xm <- mean(x)

6

7 mean> c(xm, mean(x, trim = 0.10))

8 [1] 8.75 5.50

If you want help on an entire R package, then use the package argument in the help()

function.

1 help(package=lavaan) #you need to install the lavaan package first

If you do not know exactly you need to do within R, then you can search R’s documen-

tation via the help.search() function. The argument you use in the function needs to

be enclosed in quotation marks. For example, if you are interested in testing to see if a

variable follows a normal distribution, you could use the following syntax.

1 > help.search("normality")

This produces a response that contains functions from packages that might be of interest. An

example of such output is shown in Figure 1, which indicates that in the stats package

(a package R installs by default) there is a function called shapiro.test() that will

perform the Shapiro-Wilk test for normality.

Figure 1. Example Results from help.search() Function.

Topic Package Description

shapiro.test stats Shapiro-Wilk Normality Test

Another useful way to get help is to use the Rseek web site (http://www.rseek.org/),

which is a site that uses Google to find R functions, lists, code, etc. If you are totally lost

on where to start asking for help, then typing help.start() into R will return much of

the important documentation needed to navigate R, as well as providing yet another search

engine for R helping materials.
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Using R for the Analysis of Cognitive Ability and Behavior Genetic Data 133

1.5. R Packages

Functions are a very important part of using R. When you first downloaded R, it came

with some base packages that supply functions for many statistical analysis [e.g., mean(),

var()]. These functions, however, may not do the specific analysis you specifically need

to do. Thus, you can look to see if a contributed R package can do what you need to do.

These R packages usually consist of data and functions that were written in the R language

(although sometimes they are written in FORTRAN or C and then linked back into R). This

user-contribution ability is extremely powerful, as there are many experts in various fields

using R, some of whom have contributed packages that can make your data analysis projects

much easier.

The list of R packages, with a short description of what they do, can be found in

CRAN, but it is very long and hard to navigate unless you know the specific name of

the package for which you are looking. An alternative is to examine the CRAN task

views http://cran.r-project.org/web/views/, which is designed to help users find packages

associated with specific types of work. For example, the Psychometrics http://cran.r-

project.org/web/views/Psychometrics.html view has many packages dealing with item and

test analysis.

To install a package from the command line, use the install.packages() func-

tion, naming the package to install in quotation marks. For example, to install the Bay-

lorEdPsych (Beaujean, 2012) package, use the following syntax.

1 install.packages("BaylorEdPsych", dep = TRUE)

The dep = TRUE argument tells R that in addition to the package of interest, also down-

load any other package upon which the package of interest is dependent. (This saves you

from having to download each required package separately.)

You only need to install a package to the hard disk one time, but you will need to load

it into memory every time you start a new R session and need to use one of the package’s

functions using the library() function, e.g.,

1 library(BaylorEdPsych)

(Notice there are no quotation marks around the package name.)

R is case sensitive, so Install.packages("BaylorEdPsych", dep

= TRUE), install.packages("BaylorEdpsych", dep = TRUE), or

install.Packages("BaylorEdPsych", dep = TRUE) (or any other permuta-

tion) will result in R returning an error message.

1.6. Inputting Data

1.6.1. Concatenate

The easiest way to enter data into R is to type it in directly using the concatenate, c()

function and assign a name to it. To verify that that your data is in your object (i.e., a

vector), just type the object’s name.

1 > newData<-c(4,5,3,6,9)

2 > newData
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3 [1] 4 5 3 6 9

Then you can immediately apply functions to the new object, newData

1 > mean(newData)

2 [1] 5.4

3 > sum(newData)

4 [1] 27

1.6.2. Reading In Data from an External Source

Unless the data set has one variable with a few observations (e.g., data from a textbook

example), you will usually want to store your data in an external file and have R load the

data into its working memory.

read.table() One way to read externally-stored data is the read.table function.

Before doing this, however, it will be beneficial to do three things to your data. First, change

all missing values to NA, which is the default missing value indicator in R. Second, make

sure all the variable names are only one word (i.e, there are no spaces), but you can use

the “.” in lieu of a space (e.g., first.name). Third, either save the file as a tab-delimited text

(.txt) file or a comma-delimited .txt or .csv file. Most spreadsheet and database programs

can save data either way.

In order to read the file, you will need to point R to the directory where it is located.

In R you have to use a forward slash (how Mac and other UNIX-type systems store files)

or double backslash when giving a file location, e.g., C:\\Regression\\Data.csv.

Let’s say you have a .csv file called data.csv that has your data (with a label on the

first row of each variable) located in a folder called name, which is in a folder called file.

You can type either of the following syntaxes into R to read the file.

1 # Windows

2 new.data<-read.table("C:\\file\\name\\data.csv", header=TRUE, sep=",")

3 new.data<-read.csv("C:\\file\\name\\data.csv", header=TRUE)

4 new.data<-read.csv("C:/file/name/data.csv")

5

6 # Unix-type systems

7 new.data<-read.table("/Users/first_last/file/name/data.csv", header=TRUE,

sep=",")

8 new.data<-read.csv("/Users/first_last/file/name/data.csv", header=TRUE)

Notice that the read.csv() function is the just like the read.table() function, only

it assumes you have comma-delimited values, so you do not have to use the sep=","

argument with it.

If you store your data under many sublayers of folders, or you forget the exact location,

you can search for your data file using the file.choose() function.

1 new.data<-read.table(file.choose(),header=T,sep=",")
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Using R for the Analysis of Cognitive Ability and Behavior Genetic Data 135

1.6.3. Inputting a Correlation/Covariance Matrix

In some situations you will not have access to raw data, but will have access to a covari-

ance matrix. You could type the entire matrix into R using the matrix() function, but

since such matrices are symmetric, you can make use of the diag(), upper.tri()

and lower.tri() functions. By default, R will assume you are entering the data for the

matrix by columns. The following code will create a correlation matrix titled CorM that

consists of the correlations among four variables. In addition, give names to the variables

using the rownames() and colnames() functions.

1 > CorM<-diag(4) #4 x 4 Diagonal matrix

2 > CorMNames<-c("Var1", "Var2", "Var3", "Var4") #Names of the variables

3 > rownames(CorM)<-colnames(CorM)<-CorMNames #Gives row and column names

4 > CorM[lower.tri(CorM, diag=FALSE)]<-c(.85, .84, .68, .61, .59, .41) #

lower triangle of matrix, order is by columns

5 > CorM[upper.tri(CorM, diag=FALSE)] <- CorM[lower.tri(CorM)] #make matrix

full

6 > CorM

7

8 Var1 Var2 Var3 Var4

9 Var1 1.00 0.85 0.84 0.61

10 Var2 0.85 1.00 0.68 0.59

11 Var3 0.84 0.61 1.00 0.41

12 Var4 0.68 0.59 0.41 1.00

1.7. The lavaan Package

lavaan (Rosseel, 2012) is an R package designed to do structural equation modeling. In-

formation and documentation about it can be found on the web page: http://www.lavaan.org

which redirects to http://lavaan.ugent.be.

You can install lavaan from CRAN via the following R syntax

1 install.packages("lavaan", dependencies=TRUE)

To compute a model in lavaan, first you have to specify the model as text, using a few

pre-defined commands that are shown in Table 1.

Table 1. lavaan commands

Syntax Command Example

∼ Regress onto Regress B onto A: B ∼ A

∼∼ (Co)varaince Variance of A: A ∼∼ A

Covariance of A and B: A ∼∼ B

∼1 Constant/mean Regress B onto A, and and include the intercept in the model:
B ∼ 1 + A

∼= Define latent variable Define Factor 1 by A-D:
F1 ∼= A+B+C+D

:= Define non-model parameters Define parameter u2 to be 2 times the square of u:
u2 := 2*(u

∧2)

<∼ Define formative variables Define Variable A by X1 − X4 :
A <∼ X1 + X2 + X3 + X4

Within the model, you can label parameters by premultiplying the label onto one of the
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Figure 2. Path Model Example.

variables on the left hand side of an equation. For example, the syntax for specifying the

model in Figure 2 in lavaan would be as follows.

1 example.model<-’

2 C ˜ y*B + w*A

3 D ˜ z*C + x*A

4 C˜˜C_Resid*C #Optional, included just to label residual variance

5 D˜˜D_Resid*D #Optional, included just to label residual variance

6 ’

Line 1, consists of the name of the model (example.model), the assignment operator

(<-) and single apostrophe, which indicates that the subsequent syntax will be passed as

text. Line 2 defines the structural model for C, with labels for each parameter, designed

to map onto the labels in Figure 2; likewise, line 3 defines the structural model for D with

labels. Lines 4 and 5 are optional. By default, lavaan creates an error term for each

endogenous variable and estimates the variance while constraining the path to one. So, the

only thing lines 4 and 5 contribute is the labeling of these error variances. Likewise, by

default lavaan creates a covariance term for each exogenous variable (represented by the

two-headed arrow from A to B in Figure 2). Line 6 is another single apostrophe, indicating

the end of the syntax-as-text option.

You can fit the specified model by using either the cfa() (for factor analytic models),

or sem() (for structural equation models) functions. The cfa() and sem() functions are

really just the calls to a more general lavaan() function with some of the default values

specified differently. To obtain the default values for the cfa() or sem() functions, as
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well as their various arguments, type ?cfa or ?sem, respectively, in R.

lavaan accepts either a covariance matrix (with sample size) or raw data as input,

using the sample.cov= (with sample.nobs=) or data= arguments, respectively. If

using the covariance matrix as input, you can optionally also input a mean vector with

the sample.mean= argument. By default, lavaan uses normal-theory maximum likeli-

hood as the parameter estimation technique for continuous-variable indicators, but you can

change this to generalized least squares, weighted least squares (ADF), unweighted least

squares, or diagonally weighted least squares (for categorical indictors) by specifying them

in the estimator= argument.

For example, say data was collected from 500 individuals on variables A-D that

were specified in example.model, and the data has been inputted into R, nam-

ing it example.data. To estimate the parameters in example.model using

example.data, use the following lavaan syntax.

1 example.fit<-sem(example.model, data=example.data)

To input the correlation matrix of the data (named, say, example.cov) instead of the raw

data, use the following syntax

1 example.fit<-sem(example.model, sample.cov=example.cov, sample.nobs=500)

Both calls will return nothing on-screen because the the results are stored in the

example.fit object. To obtain the results, use the summary() function.

1 summary(example.fit)

By default, the summary() function for lavaan objects will produce (a) a note

indicating if the minimization algorithm converged; (b) the sample size; (c) estima-

tor; (d) χ2; (e) χ2 degrees of freedom; (f) p-value of the χ2; (g) the unstandard-

ized parameter estimates; (h) their parameter estimates’ standard errors; (i) the ra-

tio of the parameter estimates and their standard errors (i.e., Z); and (j) the ra-

tio’s p-value. The summary() function has these default specifications for its argu-

ments: standardized=FALSE, fit.measures=FALSE, rsquare=FALSE,

modindices=FALSE. Setting standardized=TRUE will include standardized esti-

mates in the results, setting fit.measures=TRUE will include various fit indices in the

results, setting rsquare=TRUE will include the R2 for each exogenous variable, and set-

ting modindices=TRUE will include fit indices.

For the many other functions the package includes, see the documentation for the

lavaan package here http://cran.r-project.org/web/packages/lavaan/lavaan.pdf

2. Latent Variable Models of Cognitive Ability

2.1. Single Factor Model

Much of the cognitive ability literature indicates that there is a single general (common)

intelligence factor (g) that influences most measures of cognitive ability (Jensen, 1998;

Spearman, 1927). Such a model, using subtests from the Wechsler Intelligence Scale for

Children-Fourth Edition (WISC-IV (Wechsler, 2003a)) is shown in Figure 3. This model
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specifies that the only reason the subtests are correlated is because of g, and that once you

account for g, the subtests are no longer correlated. g does not explain all of the variance in

the subtests, however. Those residual/error functions accounting for non-g related variance

are represented as single-headed arrows not attached to the common factor.

Figure 3. Single factor model of cognitive ability from the WISC=IV

Some sample correlations and standard deviations (SD) for the following WISC-IV

subtests are shown in Table 2 taken from (Parkin & Beaujean, 2012), p. 118: Compre-

hension, Information, Matrix Reasoning, Picture Concepts, Similarities, Vocabulary, Digit

Span, Letter Number Sequencing, Coding and Symbol Search.

Table 2. Correlations and standard deviations for WISC-IV subtests

Subtest 1 2 3 4 5 6 7 8 9 10

1 Comprehension 1.00
2 Information 0.62 1.00
3 Matrix Reasoning 0.34 0.51 1.00
4 Picture Concepts 0.33 0.37 0.39 1.00
5 Similarities 0.63 0.73 0.48 0.38 1.00
6 Vocabulary 0.71 0.74 0.46 0.37 0.74 1.00
7 Digit Span 0.41 0.42 0.37 0.31 0.43 0.45 1.00
8 Letter Number 0.44 0.50 0.43 0.38 0.50 0.52 0.51 1.00
9 Coding 0.27 0.30 0.28 0.27 0.23 0.29 0.30 0.32 1.00
10 Symbol Search 0.34 0.43 0.41 0.30 0.38 0.39 0.37 0.45 0.49 1.00

SD 2.88 3.01 2.89 2.98 3.03 3.02 2.98 2.99 2.96 3.12

Note. Correlations and Standard Deviations taken from (Parkin & Beaujean, 2012), p. 118.

To analyze this model in lavaan, we need to (a) input the correlation matrix and SD

vector; (b) convert the correlations to covariances (Cudeck, 1989); (c) specify the factor

model; (d) estimate the model parameters; and (e) assess the model to see how well it fits

the data.

First, enter the data (the correlation matrix and standard deviation vector). One option

when entering covariance/correlation matrices is to type the entire matrix into R using the

matrix() function, but a simpler option is to make use of the fact that such matrices

are symmetric and use the diagonal, upper and lower triangle, and transpose functions,

diag(), upper.tri(), lower.tri(), and t(), respectively. By default, R assumes

the data being entered for a matrix is by columns.

1 WiscIV.cor<-matrix(NA, nrow=10, ncol=10) #Create empty 10 x 10 matrix

2 diag(WiscIV.cor)<-1 #Place 1s on the diagonal of each matrix

3 #Create the lower triangle of the matrix

.

g

Matrix

Reasoning

Vocabulary

SimilaritiesInformation

Comprehension

Picture

Concepts

Digit

Span

Letter-number

Sequencing

Coding

Symbol

Search
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4 WiscIV.cor[lower.tri(WiscIV.cor)]<-c(0.62, 0.34, 0.33, 0.63, 0.71, 0.41,

0.44, 0.27, 0.34, 0.51, 0.37, 0.73, 0.74, 0.42, 0.50, 0.30, 0.43,

0.39, 0.48, 0.46, 0.37, 0.43, 0.28, 0.41, 0.38, 0.37, 0.31, 0.38,

0.27, 0.30, 0.74, 0.43, 0.50, 0.23, 0.38, 0.45, 0.52, 0.29, 0.39,

0.51, 0.30, 0.37, 0.32, 0.45, 0.49)

5 #Transpose the lower triangle to input the upper triangle of the matrix

6 WiscIV.cor[upper.tri(WiscIV.cor)]<-t(WiscIV.cor)[upper.tri(WiscIV.cor)]

7 #input the SDs

8 WiscIV.sd<-c(2.88,3.01,2.89,2.98,3.03,3.02,2.98,2.99,2.96,3.12)

Next, convert the correlations to covariances.

1 #make covaraice out of correlations

2 library(lavaan)

3 WiscIV.cov<-cor2cov(WiscIV.cor, WiscIV.sd)

4 #name the rows and columns of the covariance matrix

5 rownames(WiscIV.cov)<-colnames(WiscIV.cov)<-c("Comprehension", "

Information", "Matrix.Reasoning", "Picture.Concepts", "Similarities",

"Vocabulary", "Digit.Span", "Letter.Number", "Coding", "Symbol.

Search")

6 #To see the actual WiscIV.cov object

7 WiscIV.cov

The cor2cov() function is part of the lavaan package, so you need to load that, via

the library() function, before using it. The covariance matrices used for analysis in

lavaan need to have both row and column names or lavaan will not be able to match

the variable in the data with the variable in the model.

Next, specify the single factor model in lavaan.

1 WISC.oneFactor.model<-’

2 g=˜ Comprehension + Information + Matrix.Reasoning + Picture.Concepts +

Similarities + Vocabulary + Digit.Span + Letter.Number + Coding +

Symbol.Search

3 ’

The model itself is enclosed in apostrophes (i.e., it is a text object). g is defined (=˜) using

all 10 WISC-IV subtests, which is specified by using the + sign before each additional

variable after the =˜.

To obtain the parameter estimates, first, estimate the parameters using the cfa()

function.

1 WISC.oneFactor.fit<-cfa(model=WISC.oneFactor.model, sample.cov=WiscIV.cov

, sample.nobs=550, std.lv=TRUE)

The first two arguments to the cfa() function are the model and the data (i.e., covariance

matrix), which we have already defined. The third argument, sample.nobs(), tells

lavaan the sample size from which the covariance matrix was calculated and needs to be

used anytime a covariance matrix is used for input. The last argument, std.lv=TRUE,

tells lavaan to estimate all the factor loadings (pattern coefficients) and constrain the

latent variable’s variance to unity. If the std.lv=TRUE option is not used, then the factor

variance would be estimated and the first indicator variable’s loading would be set to unity.
To print the parameter estimates, use the summary() function. Specifying the

standardized=TRUE argument in the summary() function produces the standardized
factor loadings (standardized regression weights) as well as the unstandardized loadings.
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1 lavaan (0.5-9) converged normally after 28 iterations

2

3 Number of observations 550

4

5 Estimator ML

6 Minimum Function Chi-square 276.092

7 Degrees of freedom 35

8 P-value 0.000

9

10 Parameter estimates:

11

12 Information Expected

13 Standard Errors Standard

14

15 Estimate Std.err Z-value P(>|z|) Std.lv Std.all

16 Latent variables:

17 g =˜

18 Comprehension 2.159 0.107 20.118 0.000 2.159 0.750

19 Information 2.534 0.106 23.911 0.000 2.534 0.843

20 Matrix.Resnng 1.680 0.116 14.439 0.000 1.680 0.582

21 Pictur.Cncpts 1.408 0.124 11.328 0.000 1.408 0.473

22 Similarities 2.525 0.107 23.537 0.000 2.525 0.834

23 Vocabulary 2.615 0.105 25.003 0.000 2.615 0.867

24 Digit.Span 1.649 0.121 13.613 0.000 1.649 0.554

25 Letter.Number 1.896 0.118 16.093 0.000 1.896 0.635

26 Coding 1.127 0.126 8.917 0.000 1.127 0.381

27 Symbol.Search 1.616 0.128 12.590 0.000 1.616 0.518

28

29 Variances:

30 Comprehension 3.619 0.246 3.619 0.437

31 Information 2.624 0.202 2.624 0.290

32 Matrix.Resnng 5.515 0.348 5.515 0.662

33 Pictur.Cncpts 6.882 0.426 6.882 0.776

34 Similarities 2.789 0.211 2.789 0.304

35 Vocabulary 2.268 0.187 2.268 0.249

36 Digit.Span 6.144 0.385 6.144 0.693

37 Letter.Number 5.327 0.341 5.327 0.597

38 Coding 7.477 0.458 7.477 0.855

39 Symbol.Search 7.105 0.443 7.105 0.731

40 g 1.000 1.000 1.000

The top part of the output can be used as a double-check to make sure the model was

specified correctly. For this model, n = 550 (correct!) and the df = 10×11/2−(10+10) =
55−20 = 35 (correct!). The factor loadings in theEstimate column give the unstandard-

ized loadings, while the loadings in the Std.all column give the standardized loadings.

Both indicate that each indicator is a relatively strong measure of g, with Vocabulary being

the most saturated (i.e., having the strongest loading) and Coding being the least.

To estimate the communality of each indicator (i.e., the amount of variance g explains),

either calculate the values “manually” by squaring each loading, or let R do the work by

extracting the loadings by using the inspect() function with the what="rsquare"

argument.

1 > inspect(object=WISC.oneFactor.fit, what="rsquare")
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2 Comprehension Information Matrix.Reasoning Picture.Concepts

3 0.5628758 0.7098617 0.3384281 0.2236483

4

5 Similarities Vocabulary Digit.Span

6 0.6956403 0.7508676 0.3069146

7

8 Letter.Number Coding Symbol.Search

9 0.4030142 0.1451074 0.2688097

From the output, you can see that g explains from 15-75% of the variance in the subtests.

Last, to obtain some measures of model fit, use the fitMeasures() function.

1 > fitMeasures(WISC.oneFactor.fit)

2 chisq df pvalue baseline.chisq

3 276.092 35.000 0.000 2552.014

4

5 baseline.df baseline.pvalue

6 45.000 0.000

7

8 cfi tli logl unrestricted.logl

9 0.904 0.876 -12676.518 -12538.472

10 npar aic

11 20.000 25393.037

12

13 bic ntotal bic2 rmsea

14 25479.235 550.000 25415.747 0.112

15

16 rmsea.ci.lower rmsea.ci.upper

17 0.100 0.124

18

19 rmsea.pvalue srmr srmr_nomean

20 0.000 0.067 0.067

While lavaan does not print out every fit statistic values, it does print enough information

to estimate any other fit statistics. For example, McDonald’s (McDonald, 1989) noncen-

trality index (Mc), is calculated as:

Mc = exp(−0.5dT ) (1)

where

exp() is the exponentiation function, and

dT is the scaled NCP (noncentrality index) for the target model, i.e, dT = χ2
−df

n−1
.

This is calculated in R using the following syntax:

1 > NCP<-as.numeric(fitMeasures(WISC.oneFactor.fit, fit.measures="chisq"))

- as.numeric(fitMeasures(WISC.oneFactor.fit, fit.measures="df")) #

Non-centrality Parameter

2 > d<- NCP/550 #scaled NCP

3 > Mc<-exp(-0.5*d)

4 > Mc

5 [1] 0.8031815

where the as.numeric() function strips away everything in the object except the num-

ber.
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2.2. Multifactor Model

Many current scholars in cognitive ability research argue that there is more than a single

factor (general) factor influencing performance on cognitive ability tests (e.g. (Newton &

McGrew, 2010)). Instead, they posit that there are multiple factors, although these fac-

tors are related to each other. Such a multifactor model of the WISC-IV data is shown

in Figure 4, which posits that there are four factors: (a) Comprehension-Knowledge (Gc),

(b) Fluid Intelligence (Gf ), (c) Short-term Retrieval (Gsm), and (d) Processing Speed (Gs)

(cf. (Wechsler, 2003b)).

Figure 4. Four Factor Model of Cognitive Ability from the WISC-IV.

Since this model uses the same data as the single factor model, the data entry component

is the same. The model specification in lavaan is as follow.

1 > WISC.fourFactor.model<-’

2 Gc =˜ Comprehension + Information + Similarities + Vocabulary

3 Gf =˜ Matrix.Reasoning + Picture.Concepts

4 Gsm =˜ Digit.Span + Letter.Number

5 Gs =˜ Coding + Symbol.Search

6 ’

To estimate the parameters and obtain the fit statistics, use the following syntax.

1 > WISC.fourFactor.fit<-cfa(model=WISC.fourFactor.model, sample.cov=WiscIV

.cov, sample.nobs=550, std.lv=TRUE)

2 > summary(WISC.fourFactor.fit, fit.measure=TRUE, standardized=TRUE)

3

4 lavaan (0.5-9) converged normally after 40 iterations

5

6 Number of observations 550

7

8 Estimator ML

9 Minimum Function Chi-square 51.634

10 Degrees of freedom 29

11 P-value 0.006

12

13 Chi-square test baseline model:

14

15 Minimum Function Chi-square 2552.014

16 Degrees of freedom 45

17 P-value 0.000

18

Matrix
Reasoning

VocabularySimilaritiesInformationComprehension
Picture
Concepts

Digit
Span

Letter-number
Sequencing

Coding
Symbol
Search

Gf GsmGc Gs
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19 Full model versus baseline model:

20

21 Comparative Fit Index (CFI) 0.991

22 Tucker-Lewis Index (TLI) 0.986

23

24 Loglikelihood and Information Criteria:

25

26 Loglikelihood user model (H0) -12564.289

27 Loglikelihood unrestricted model (H1) -12538.472

28

29 Number of free parameters 26

30 Akaike (AIC) 25180.578

31 Bayesian (BIC) 25292.636

32 Sample-size adjusted Bayesian (BIC) 25210.101

33

34 Root Mean Square Error of Approximation:

35

36 RMSEA 0.038

37 90 Percent Confidence Interval 0.020 0.054

38 P-value RMSEA <= 0.05 0.885

39

40 Standardized Root Mean Square Residual:

41

42 SRMR 0.020

43

44 Parameter estimates:

45

46 Information Expected

47 Standard Errors Standard

48

49 Estimate Std.err Z-value P(>|z|) Std.lv Std.all

50 Latent variables:

51 Gc =˜

52 Comprehension 2.192 0.107 20.526 0.000 2.192 0.762

53 Information 2.544 0.106 24.002 0.000 2.544 0.846

54 Similarities 2.558 0.107 23.963 0.000 2.558 0.845

55 Vocabulary 2.670 0.104 25.780 0.000 2.670 0.885

56 Gf =˜

57 Matrix.Resnng 1.999 0.136 14.698 0.000 1.999 0.692

58 Pictur.Cncpts 1.677 0.136 12.340 0.000 1.677 0.563

59 Gsm =˜

60 Digit.Span 1.968 0.126 15.589 0.000 1.968 0.661

61 Letter.Number 2.305 0.126 18.234 0.000 2.305 0.772

62 Gs =˜

63 Coding 1.778 0.136 13.060 0.000 1.778 0.601

64 Symbol.Search 2.541 0.152 16.740 0.000 2.541 0.815

65

66 Covariances:

67 Gc ˜˜

68 Gf 0.779 0.041 18.896 0.000 0.779 0.779

69 Gsm 0.765 0.033 23.395 0.000 0.765 0.765

70 Gs 0.560 0.042 13.171 0.000 0.560 0.560

71 Gf ˜˜

72 Gsm 0.824 0.050 16.405 0.000 0.824 0.824

73 Gs 0.705 0.054 12.940 0.000 0.705 0.705
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74 Gsm ˜˜

75 Gs 0.707 0.047 15.199 0.000 0.707 0.707

76

77 Variances:

78 Comprehension 3.474 0.240 3.474 0.420

79 Information 2.573 0.204 2.573 0.284

80 Similarities 2.621 0.207 2.621 0.286

81 Vocabulary 1.977 0.181 1.977 0.217

82 Matrix.Resnng 4.340 0.424 4.340 0.521

83 Pictur.Cncpts 6.052 0.434 6.052 0.683

84 Digit.Span 4.991 0.377 4.991 0.563

85 Letter.Number 3.611 0.381 3.611 0.405

86 Coding 5.585 0.428 5.585 0.639

87 Symbol.Search 3.261 0.574 3.261 0.336

88 Gc 1.000 1.000 1.000

89 Gf 1.000 1.000 1.000

90 Gsm 1.000 1.000 1.000

91 Gs 1.000 1.000 1.000

Notice the fit.measure=TRUE argument in the summary() function. Specifying this

gives the fit indices along with the model parameter estimates, which is an alternative to

using the fitMeasures() function.

As the single factor model is nested in the four-factor model (i.e., the one-factor model

is a more restrictive version of the four factor model (Brunner, Nagy, & Wilhelm, 2012)),

the models can be compared directly using the anova() function.

1 Chi Square Difference Test

2

3 Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

4 WISC.fourFactor.fit 29 25181 25293 51.634

5 WISC.oneFactor.fit 35 25393 25479 276.092 224.46 6 < 2.2e-16

***
6 ---

7 Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

It appears that from both the change in χ2 values and the other fit measures that the four-

factor model fits the data somewhat better than the single factor model.

2.3. Higher-Order Model

The models considered thus far have only estimated factors that directly influence the sub-

tests. An alternative to this kind of model is a higher-order model, which specifies that there

are factors that directly influence the subtests (i.e, first-order factors) as well as factors that

directly influence the factors (i.e., second-order factors) (Rindskopf & Rose, 1988). A typi-

cal higher-order model for cognitive abilities data is one that posits that g is the sole reason

why the the first-order factors are correlated with each other (Carroll, 1993). Such a model

is shown in Figure 5.

The specification of this model is similar to that from the single- and multi-factor mod-

els, except this model also requires specifying a factor made up of the four other factors.

1 WISC.higherOrder.model<-’

2 gc =˜ Comprehension + Information + Similarities + Vocabulary
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Figure 5. Higher Order Factor Model of Cognitive Ability from the WISC-IV.

3 gf =˜ Matrix.Reasoning + Picture.Concepts

4 gsm =˜ Digit.Span + Letter.Number

5 gs =˜ Coding + Symbol.Search

6

7 g=˜ NA*gf + gc + gsm + gs

8 g˜˜1*g

9 ’

Notice the NA* in front of the gf term in line 7. This tells lavaan to estimate this loading

instead of constraining it to unity (i.e., 1), which is the default. The trade-off for doing this

is that g’s variance must be constrained to unity, which is done with the g˜˜1*g syntax in

line 8. This is done because it is better to estimate the (residual) variances of the first-order

factors instead of constrain them to be unity.

Next, estimate the parameters and obtain the results and fit statistics.

1 > WISC.higherOrder.fit<-cfa(model=WISC.higherOrder.model, sample.cov=

WiscIV.cov, sample.nobs=550)

2 > summary(WISC.higherOrder.fit, fit.measure=TRUE, standardized=TRUE)

3 lavaan (0.5-9) converged normally after 56 iterations

4

5 Number of observations 550

6

7 Estimator ML

8 Minimum Function Chi-square 57.592

9 Degrees of freedom 31

10 P-value 0.003

11

12 Chi-square test baseline model:

13

14 Minimum Function Chi-square 2552.014

15 Degrees of freedom 45

16 P-value 0.000

17

18 Full model versus baseline model:

19

20 Comparative Fit Index (CFI) 0.989

21 Tucker-Lewis Index (TLI) 0.985

22

23 Loglikelihood and Information Criteria:

24

25 Loglikelihood user model (H0) -12567.268

26 Loglikelihood unrestricted model (H1) -12538.472

27

28 Number of free parameters 24

g

Matrix
Reasoning

VocabularySimilaritiesInformationComprehension
Picture
Concepts

Digit
Span

Letter-number
Sequencing

Coding
Symbol
Search

Gf GsmGc Gs
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29 Akaike (AIC) 25182.537

30 Bayesian (BIC) 25285.975

31 Sample-size adjusted Bayesian (BIC) 25209.788

32

33 Root Mean Square Error of Approximation:

34

35 RMSEA 0.039

36 90 Percent Confidence Interval 0.023 0.055

37 P-value RMSEA <= 0.05 0.856

38

39 Standardized Root Mean Square Residual:

40

41 SRMR 0.023

42

43 Parameter estimates:

44

45 Information Expected

46 Standard Errors Standard

47

48 Estimate Std.err Z-value P(>|z|) Std.lv Std.all

49 Latent variables:

50 gc =˜

51 Comprehension 1.000 2.194 0.762

52 Information 1.160 0.056 20.813 0.000 2.545 0.846

53 Similarities 1.165 0.056 20.753 0.000 2.555 0.844

54 Vocabulary 1.217 0.056 21.857 0.000 2.670 0.885

55 gf =˜

56 Matrix.Resnng 1.000 1.990 0.689

57 Pictur.Cncpts 0.847 0.079 10.754 0.000 1.685 0.566

58 gsm =˜

59 Digit.Span 1.000 1.967 0.661

60 Letter.Number 1.172 0.087 13.505 0.000 2.306 0.772

61 gs =˜

62 Coding 1.000 1.771 0.599

63 Symbol.Search 1.441 0.142 10.141 0.000 2.551 0.818

64 g =˜

65 gf 1.851 0.122 15.173 0.000 0.930 0.930

66 gc 1.794 0.112 16.023 0.000 0.818 0.818

67 gsm 1.822 0.130 14.070 0.000 0.927 0.927

68 gs 1.293 0.133 9.709 0.000 0.730 0.730

69

70 Variances:

71 g 1.000 1.000 1.000

72 Comprehension 3.467 0.240 3.467 0.419

73 Information 2.567 0.203 2.567 0.284

74 Similarities 2.634 0.208 2.634 0.287

75 Vocabulary 1.976 0.181 1.976 0.217

76 Matrix.Resnng 4.377 0.424 4.377 0.525

77 Pictur.Cncpts 6.026 0.435 6.026 0.680

78 Digit.Span 4.996 0.378 4.996 0.564

79 Letter.Number 3.606 0.382 3.606 0.404

80 Coding 5.610 0.430 5.610 0.641

81 Symbol.Search 3.210 0.584 3.210 0.330

82 gc 1.596 0.226 0.332 0.332

83 gf 0.533 0.340 0.135 0.135
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84 gsm 0.547 0.241 0.141 0.141

85 gs 1.464 0.263 0.467 0.467

Notice the lack of std.lv=TRUE argument in the cfa() function, which is equivalent to

including the argument std.lv=FALSE because that is the default value for the function.

To estimate the direct impact of g and the first-order factors on the WISC-IV subtests,

use Wright’s (Wright, 1934, 1968) rules (cf. (Loehlin, 2004)). Specifically, the factor

loadings of the subtests on g are computed by multiplying the factor loading of each subtest

on the corresponding first-order factor by the factor loading of this first-order factor on g.

For example, the standardized loading of the Comprehension subtest score on g is computed

as .762 × .818 = .623. Further, the loadings of the subtests on a specific factor can be

computed by multiplying the factor loading of each subtest on the corresponding first-order

factor by the standard deviation of the corresponding specific factor. For example, the

standardized loading of the Comprehension subtest score on Gc is .762× .576 = .439 (the

[standardized] variance of Gc is .332 and
√

.332 = .576).

This model fits the data very similarly to the four-factor model, although since the

higher-order model is more parsimonious (it estimates 24 parameters instead of the 26 pa-

rameters the four-factor model estimates), it is probably a better model for this data. One

other way to see how well this model fit the data is to inspect the residual correlations of

the first-order factors (i.e., the difference between the model-implied correlations among

the first-order constructs and the corresponding correlations in the first-order factor model

(McDonald, 2011)). The actual and implied correlations are given in Table 3. The residu-

als are given in Table 4, and range from -.04 to .03, which are likely not of much concern.

Another way to see how well the model fits is to examine the amount of variance in the first-

order factors explained by the second order factor (see Table 5). With this data, g explains

between 54 and 87% of the first order factors’ variances.

Table 3. Correlations among first-order factors (Actual correlations are in upper

triangle and implied correlations are in the lower triangle)

height Gf Gc Gsm Gs

Gf 1.00 0.78 0.82 0.71

Gc 0.76 1.00 0.77 0.56

Gsm 0.86 0.76 1.00 0.71

Gs 0.68 0.60 0.68 1.00

Table 4. Residual correlations of first-order factors

Gf Gc Gsm Gs

Gf
Gc 0.02
Gsm -0.04 0.01
Gs 0.03 -0.04 0.03
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Table 5. Variances of first-order factors

Observed Residual
Variance Variance R2

Gc 4.81 1.60 0.67
Gf 4.00 0.53 0.87
Gsm 3.87 0.55 0.86
Gs 3.16 1.46 0.54

Schmid-Leiman Transformation (Schmid & Leiman, 1957) developed a transforma-

tion of the higher-order factor model to yield uncorrelated first-order factors that represent

both the second-order and the first-order factors. This transformation of the factor loadings

makes them reflect the incremental influence of both general and specific abilities on the

indicator variable. As this procedure just transforms the higher order factor model, the “fit”

of both models will be identical (Yung, Thissen, & McLeod, 1999).

The Schmid-Leiman (S-L) transformation can be used to estimate the direct impact of

g and the first-order constructs on the subtests. You can calculate the factor loadings of the

manifest subtest scores on g and the first order factors using Wright’s (Wright, 1934, 1968)

rules as was done in the previous section. This would be tedious to do by hand for each

indicator, but can be carried out efficiently using matrices following the steps outlined in

(Gorsuch, 1983) (see Figure 6 ).

Figure 6. Steps for Conducting the Schmid-Leiman Transformation.
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The psych package (Revelle, 2012) has the schmid() function that will conduct the

S-L transformation in a EFA context (see also the bi-factor rotation in the GPArotation

package (Bernaards & Jennrich, 2005; Jennrich & Bentler, 2011)). The syntax below will

complete the S-L transformation using the output from the second-order CFA model.

1 #Residual variances

2 > U2<-diag(c(.332, .135, .141, .467))

3 > U<-sqrt(U2)

4 > rownames(U)<-colnames(U)<-c("gc","gf", "gsm", "gs")

5 > #First Order loadings

6 > Loadings<-matrix(0,ncol=4,nrow=10)

7 > colnames(Loadings)<-c("gc","gf", "gsm", "gs")

8 > rownames(Loadings)<-c("Comprehension", "Information", "Similarities", "

Vocabulary", "Matrix.Reasoning", "Picture.Concepts", "Digit.Span", "

Letter.Number", "Coding", "Symbol.Search")

9 > Loadings[1:4,1]<-c(0.762, 0.846, 0.844, 0.885) #Gc loadings

10 > Loadings[5:6,2]<-c(0.689, 0.566) #Gf loadings

11 > Loadings[7:8,3]<-c(0.661, 0.772) #Gsm loadings

12 > Loadings[9:10,4]<-c(0.599, 0.818) #Gs loadings

13 > #Second-order loadings

14 > Higher.Loadings<-matrix(c(.818,.930, .927, .730),ncol=1)

15 > colnames(Higher.Loadings)<-"g"

16 > rownames(Higher.Loadings)<-c("gc","gf", "gsm", "gs")

17 > A<-cbind(Higher.Loadings,U)

18 >

19 > #S-L transformed matrix

20 > Loadings%*%A

21 g gc gf gsm gs

22 Comprehension 0.623316 0.4390601 0.0000000 0.0000000 0.0000000

23 Information 0.692028 0.4874605 0.0000000 0.0000000 0.0000000

24 Similarities 0.690392 0.4863081 0.0000000 0.0000000 0.0000000

25 Vocabulary 0.723930 0.5099321 0.0000000 0.0000000 0.0000000

26 Matrix.Reasoning 0.640770 0.0000000 0.2531548 0.0000000 0.0000000

27 Picture.Concepts 0.526380 0.0000000 0.2079617 0.0000000 0.0000000

28 Digit.Span 0.612747 0.0000000 0.0000000 0.2482053 0.0000000

29 Letter.Number 0.715644 0.0000000 0.0000000 0.2898857 0.0000000

30 Coding 0.437270 0.0000000 0.0000000 0.0000000 0.4093410

31 Symbol.Search 0.597140 0.0000000 0.0000000 0.0000000 0.5589999

The S-L transformation orthogonalizes the relationship between the higher-order and

lower-order factors. That is, first the highest order factor solution is determined, then the

next highest order is determined based on the variance orthogonal to the highest order.

Moreover, the S-L factors are proportionality constrained. This constraint affects the pro-

portion of variance in the subtest scores explained by general and specific ability constructs.

Specifically, for a given set of subtests, the ratios of variance attributable to the respective

first-order ability to variance attributable to g are constrained to be the same. For exam-

ple, the standardized factor loadings on the first order factor for Comprehension is .762

and for Information is .846. The standardized factor loadings of these subtests on g are

.762 × .818 = .623 and .846 × .818 = .692, respectively. The variance ratio for the

Comprehension subtest is .7622

.6232 = 1.50 and for Information is .8462

.6922 = 1.50
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2.4. Hierarchical Model

An alternative to the higher-order model is a hierarchal model, which specifies that all the

factors are first-order factors, only some of these first order factors are more general than

others (Rindskopf & Rose, 1988). Sometimes hierarchical models are called a bi-factor

models or nested-factor models (Chen, West, & Sousa, 2006; Brunner et al., 2012; Mulaik

& Quartetti, 1997).

(Chen et al., 2006) write that hierarchal models should be investigated when (a) there is

a general factor that is hypothesized to account for the commonality of the items; (b) there

are multiple domain specific factors, each of which is hypothesized to account for the unique

influence of the specific domain over and above the general factor; or (c) interest is in the

domain specific factors as well as the common factor. They further argue that a hierarchal

model is often better than a higher-order model as hierarchical models (a) can be used to

study the role of domain specific factors that are independent of the general factor; (b) allow

for the direct examination of the strength of the relationship between the first-order factors

and their associated indicator variables via the factor loadings, whereas such relationships

cannot be directly examined in the second-order factor models. (c) can be useful in testing

whether a first-order factor predict external variables, over and above the general factor, as

the domain specific factors are directly represented as independent factors; and (d) allow

for the testing of measurement invariance of the domain specific factors, in addition to the

general factor, whereas the second-order model only allows for invariance in the second-

order factor to be directly tested for invariance because the first-order factors are represented

by disturbances.

An example of a hierarchical model is shown in Figure 7. Notice that g, Gc, Gf, Gsm,

and Gs are all first-order factors, but that g is uncorrelated with the other factors. Thus, this

model is similar to the S-L transformation, but here there are no proportionality constraints.

The syntax given below is for a hierarchical model with uncorrelated domain specific fac-

tors, but a more general model could allow them to be correlated (Rindskopf & Rose, 1988).

The specification of the hierarchical model in lavaan is

1 ## Hierarchical model

2 WISC.hierarchical.model<-’

3 gc =˜ Comprehension + Information + Similarities + Vocabulary

4 gf =˜ a*Matrix.Reasoning + a*Picture.Concepts

5 gsm =˜ b*Digit.Span + b*Letter.Number

6 gs =˜ c*Coding + c*Symbol.Search

7 g=˜ Comprehension + Information + Matrix.Reasoning + Picture.Concepts +

Similarities + Vocabulary + Digit.Span + Letter.Number + Coding +

Symbol.Search

8 g˜˜0*gc + 0*gf + 0*gsm + 0*gs

9 gc ˜˜ 0*gf + 0*gsm + 0*gs

10 gf ˜˜ 0*gsm + 0*gs

11 gsm ˜˜ 0*gs

12 ’

Lines 1-3 and 7 are very similar to the other models specified in this chapter. Lines

4-6 and lines 8-11 are different, though. Lines 4-6 specify that for Gs, Gsm, and Gs, both

indicator variables are pre-multiplied by the same label, which constrains the parameter

estimate to be the same (see Section 3. for more information on constriants). This has to be

Complimentary Contributor Copy



Using R for the Analysis of Cognitive Ability and Behavior Genetic Data 151

Figure 7. Hierarchical Model of the WISC-IV Subtests.

done for these latent variables or the model would be empirically underidentified (Kenny,

1979; Rindskopf, 1984).

The default in lavaan is for all exogenous variables to be correlated with each, so line

8 tells lavaan that g needs to be uncorrelated with Gc, Gf, Gsm and Gs, line 9 specifies

that Gc need to be uncorrelated with Gf, Gsm and Gs, and so on. Notice that, for each

variable, the parameter constraints are done through one statement instead of separate ones.

The left hand side of the double tilde specifies one of the variables and the multiple + signs

on the right hand side of the double tilde means that the the constraints are all going to

apply to a variable’s relationship with the variable of the left hand side.

The syntax to estimate the model’s parameters and calculate the fit indices is the same

as with the previous models, only replacing the model argument.

1 > WISC.hierarchical.fit<-cfa(model=WISC.hierarchical.model, sample.cov=

WiscIV.cov, sample.nobs=550, std.lv=TRUE)

2 > summary(WISC.hierarchical.fit, fit.measure=TRUE, standardized=TRUE)

3 lavaan (0.5-9) converged normally after 48 iterations

4

5 Number of observations 550

6

7 Estimator ML

8 Minimum Function Chi-square 50.345

9 Degrees of freedom 28

10 P-value 0.006

11

12 Chi-square test baseline model:

13

14 Minimum Function Chi-square 2552.014

15 Degrees of freedom 45

16 P-value 0.000

17

18 Full model versus baseline model:

19

20 Comparative Fit Index (CFI) 0.991

21 Tucker-Lewis Index (TLI) 0.986

22

23 Loglikelihood and Information Criteria:

24

25 Loglikelihood user model (H0) -12563.645

g

Matrix
Reasoning

VocabularySimilaritiesInformationComprehension
Picture
Concepts

Digit
Span

Letter-number
Sequencing

Coding
Symbol
Search

Gf GsmGc Gs
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26 Loglikelihood unrestricted model (H1) -12538.472

27

28 Number of free parameters 27

29 Akaike (AIC) 25181.290

30 Bayesian (BIC) 25297.657

31 Sample-size adjusted Bayesian (BIC) 25211.948

32

33 Root Mean Square Error of Approximation:

34

35 RMSEA 0.038

36 90 Percent Confidence Interval 0.020 0.055

37 P-value RMSEA <= 0.05 0.873

38

39 Standardized Root Mean Square Residual:

40

41 SRMR 0.022

42

43 Parameter estimates:

44

45 Information Expected

46 Standard Errors Standard

47

48 Estimate Std.err Z-value P(>|z|) Std.lv Std.all

49 Latent variables:

50 gc =˜

51 Comprhnsn 1.424 0.131 10.873 0.000 1.424 0.495

52 Informatn 1.259 0.127 9.917 0.000 1.259 0.419

53 Similarts 1.374 0.128 10.724 0.000 1.374 0.454

54 Vocabulry 1.662 0.122 13.652 0.000 1.662 0.551

55 gf =˜

56 Mtrx.Rsnn (a) 0.635 0.221 2.874 0.004 0.635 0.220

57 Pctr.Cncp (a) 0.635 0.221 2.874 0.004 0.635 0.213

58 gsm =˜

59 Digit.Spn (b) 0.867 0.163 5.321 0.000 0.867 0.291

60 Lttr.Nmbr (b) 0.867 0.163 5.321 0.000 0.867 0.290

61 gs =˜

62 Coding (c) 1.460 0.114 12.794 0.000 1.460 0.494

63 Symbl.Src (c) 1.460 0.114 12.794 0.000 1.460 0.468

64 g =˜

65 Comprhnsn 1.709 0.127 13.496 0.000 1.709 0.594

66 Informatn 2.190 0.124 17.674 0.000 2.190 0.728

67 Mtrx.Rsnn 1.882 0.121 15.502 0.000 1.882 0.652

68 Pctr.Cncp 1.568 0.132 11.898 0.000 1.568 0.527

69 Similarts 2.131 0.126 16.862 0.000 2.131 0.704

70 Vocabulry 2.135 0.126 16.961 0.000 2.135 0.708

71 Digit.Spn 1.792 0.129 13.844 0.000 1.792 0.602

72 Lttr.Nmbr 2.112 0.123 17.105 0.000 2.112 0.707

73 Coding 1.280 0.133 9.614 0.000 1.280 0.433

74 Symbl.Src 1.864 0.133 14.056 0.000 1.864 0.598

75

76 Covariances:

77 gc ˜˜

78 g 0.000 0.000 0.000

79 gf ˜˜

80 g 0.000 0.000 0.000
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81 gsm ˜˜

82 g 0.000 0.000 0.000

83 gs ˜˜

84 g 0.000 0.000 0.000

85 gc ˜˜

86 gf 0.000 0.000 0.000

87 gsm 0.000 0.000 0.000

88 gs 0.000 0.000 0.000

89 gf ˜˜

90 gsm 0.000 0.000 0.000

91 gs 0.000 0.000 0.000

92 gsm ˜˜

93 gs 0.000 0.000 0.000

94

95 Variances:

96 Comprehension 3.330 0.251 3.330 0.402

97 Information 2.661 0.202 2.661 0.294

98 Similarities 2.735 0.212 2.735 0.298

99 Vocabulary 1.783 0.208 1.783 0.196

100 Matrix.Resnng 4.393 0.384 4.393 0.527

101 Pictur.Cncpts 6.004 0.444 6.004 0.677

102 Digit.Span 4.902 0.381 4.902 0.553

103 Letter.Number 3.711 0.345 3.711 0.416

104 Coding 4.977 0.409 4.977 0.569

105 Symbol.Search 4.110 0.392 4.110 0.423

106 gc 1.000 1.000 1.000

107 gf 1.000 1.000 1.000

108 gsm 1.000 1.000 1.000

109 gs 1.000 1.000 1.000

110 g 1.000 1.000 1.000

All of the fit indices indicate that this model fits the data fairly well, and arguably better

than the other models of this data.

One nice feature of the hierarchical model that the higher-order model does not have is

that it can be used to test if the domain specific factors (i.e., Gf, Gc, Gsm , Gs) explain any

additional variance above and beyond the general factor, (i.e, g) by removing the domain

specific factors from the model and examining how it fits the data. For example, the results

from the hierarchical model indicate that factor loadings for the Gf and Gsm are relatively

small (standardized loadings <0.30), so we can fit a model without these factors.

1 > WISC.hierarchical2.model<-’

2 + gc =˜ Comprehension + Information + Similarities + Vocabulary

3 + gs =˜ c*Coding + c*Symbol.Search

4 +

5 + g=˜ Comprehension + Information + Matrix.Reasoning + Picture.Concepts +

Similarities + Vocabulary + Digit.Span + Letter.Number + Coding +

Symbol.Search

6 + g˜˜0*gc + 0*gs

7 + gc ˜˜ 0*gs

8 + ’

9 >

10 > WISC.hierarchical2.fit<-cfa(model=WISC.hierarchical2.model, sample.cov=

WiscIV.cov, sample.nobs=550, std.lv=TRUE)

11 > summary(WISC.hierarchical2.fit, fit.measure=TRUE, standardized=TRUE)
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12 lavaan (0.5-9) converged normally after 36 iterations

13

14 Number of observations 550

15

16 Estimator ML

17 Minimum Function Chi-square 60.949

18 Degrees of freedom 30

19 P-value 0.001

20

21 Chi-square test baseline model:

22

23 Minimum Function Chi-square 2552.014

24 Degrees of freedom 45

25 P-value 0.000

26

27 Full model versus baseline model:

28

29 Comparative Fit Index (CFI) 0.988

30 Tucker-Lewis Index (TLI) 0.981

31

32 Loglikelihood and Information Criteria:

33

34 Loglikelihood user model (H0) -12568.947

35 Loglikelihood unrestricted model (H1) -12538.472

36

37 Number of free parameters 25

38 Akaike (AIC) 25187.894

39 Bayesian (BIC) 25295.642

40 Sample-size adjusted Bayesian (BIC) 25216.281

41

42 Root Mean Square Error of Approximation:

43

44 RMSEA 0.043

45 90 Percent Confidence Interval 0.027 0.059

46 P-value RMSEA <= 0.05 0.744

47

48 Standardized Root Mean Square Residual:

49

50 SRMR 0.023

51

52 Parameter estimates:

53

54 Information Expected

55 Standard Errors Standard

56

57 Estimate Std.err Z-value P(>|z|) Std.lv Std.all

58 Latent variables:

59 gc =˜

60 Comprhnsn 1.435 0.125 11.516 0.000 1.435 0.499

61 Informatn 1.337 0.119 11.228 0.000 1.337 0.445

62 Similarts 1.436 0.121 11.896 0.000 1.436 0.474

63 Vocabulry 1.694 0.115 14.734 0.000 1.694 0.561

64 gs =˜

65 Coding (c) 1.460 0.113 12.905 0.000 1.460 0.494

66 Symbl.Src (c) 1.460 0.113 12.905 0.000 1.460 0.468
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67 g =˜

68 Comprhnsn 1.695 0.124 13.625 0.000 1.695 0.589

69 Informatn 2.140 0.122 17.472 0.000 2.140 0.712

70 Mtrx.Rsnn 1.873 0.119 15.699 0.000 1.873 0.649

71 Pctr.Cncp 1.592 0.128 12.414 0.000 1.592 0.535

72 Similarts 2.092 0.125 16.780 0.000 2.092 0.691

73 Vocabulry 2.106 0.124 17.009 0.000 2.106 0.698

74 Digit.Spn 1.878 0.124 15.161 0.000 1.878 0.631

75 Lttr.Nmbr 2.178 0.119 18.248 0.000 2.178 0.729

76 Coding 1.285 0.132 9.738 0.000 1.285 0.435

77 Symbl.Src 1.857 0.132 14.106 0.000 1.857 0.596

78

79 Covariances:

80 gc ˜˜

81 g 0.000 0.000 0.000

82 gs ˜˜

83 g 0.000 0.000 0.000

84 gc ˜˜

85 gs 0.000 0.000 0.000

86

87 Variances:

88 Comprehension 3.346 0.248 3.346 0.404

89 Information 2.677 0.204 2.677 0.296

90 Similarities 2.727 0.213 2.727 0.298

91 Vocabulary 1.799 0.204 1.799 0.198

92 Coding 4.963 0.408 4.963 0.567

93 Symbol.Search 4.139 0.391 4.139 0.426

94 Matrix.Resnng 4.828 0.341 4.828 0.579

95 Pictur.Cncpts 6.331 0.415 6.331 0.714

96 Digit.Span 5.336 0.371 5.336 0.602

97 Letter.Number 4.179 0.328 4.179 0.468

98 gc 1.000 1.000 1.000

99 gs 1.000 1.000 1.000

100 g 1.000 1.000 1.000

While difference in χ − square is moderately large (χ2
df=1

= 10.60, p = .01), none of the

other measures of model fit are appreciably different between the two models. Moreover,

the change in R2 values for the four subtests affected by the removal of the two factors

(Matrix Reasoning, Picture Concepts, Digit Span, and Letter-Number Sequencing) only

change by .04-.05 units. Consequently, it appears that the covariance among the Gf and

Gsm subtests are mostly explained by g, alone.

3. Behavior Genetic Analysis

Behavior genetics is the study of the genetic and environmental influences on psychological

traits (Plomin, DeFries, McClearn, & McGuffin, 2008). It can answer many questions that

traditional research designs cannot, such as the interaction of genotype with sex, age and

lifestyle factors, cultural transmission, genetic and environmental stability over time, and

the causes of co-morbidity between traits and diseases (Boomsma, Busjahn, & Peltonen,

2002). Traditionally, these analysis have used “natural experiments” to study these rela-

tionships (Rutter, 2007), such as twins reared in differing environments (Bouchard, 1991)
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and adoption studies (Jensen, 1997), as well as the general study of sibling similarities and

differences (Jensen, 1980; Dunn & Plomin, 1992).

Initially, studies in this field used variations of regression models in conjunction with

the kinship of individuals within the sample to partition the phenotypic variance into genetic

and environmental components (DeFries & Fulker, 1985; Falconer, 1960), and such models

are still used (Lynch & Walsh, 1998; Falconer & Mackay, 1996). With the advent of more

powerful computers and data analysis programs, the field has moved to using latent variable

models for much of its analyses (Neale & Maes, 1992). That trend is especially evident

by the development of the the Mx program (Neale, Boker, Xie, & Maes, 2003) and its

translation into the R language via OpenMx (Boker et al., 2011).

The use of latent variable models for behavioral genetic data requires two extensions

from the models this chapter has covered thus far. First, the ability to estimate parameters

for different groups concurrently, and, second, the ability to constrain parameter estimates

within and between groups.

To input the data from multiple groups in lavaan, the data from the different groups

needs to be combined into a single list. In R, a list is a single objected made up of an

ordered (and possibly named) collection of objects (technically called components). As an

example, say we obtained Full Scale IQ (FSIQ) scores in a set of monozygotic (MZ) and

dizygotic (DZ) twins. The correlation of the scores between the MZ twins was .86, but

for the DZ the correlation was .60 ((Bouchard & McGue, 1981) p. 1056). To enter both

datasets in R as a list, first we need to enter the correlation matrices for the MZ and DZ

twins, separately.

1 > MZ.cor<-matrix(c(1,.86,.86,1),nrow=2)

2 > DZ.cor<-matrix(c(1,.60,.60,1),nrow=2)

Then, we need to name the rows and columns in each matrix

1 > rownames(MZ.cor)<-c("P1", "P2")

2 > colnames(MZ.cor)<-c("P1", "P2")

3 > rownames(DZ.cor)<-c("P1", "P2")

4 > colnames(DZ.cor)<-c("P1", "P2")

where “P1” stands for the measured phenotype from twin 1, and “P2” stands for the mea-

sured phenotype from twin 2.

Assuming the standard deviation is 15 and does not differ between groups (Koeppen-

Schomerus, Spinath, & Plomin, 2003), lavaan’s cor2cov() function can convert each

correlation matrix to a covariance matrix.

1 > DZ.cov<-cor2cov(DZ.cor, c(15,15))

2 > MZ.cov<-cor2cov(MZ.cor, c(15,15))

To combine the two matrices into a list, use the list() function.

1 sib.cov<-list(MZ=MZ.cov,DZ=DZ.cov)

In the previous syntax, the list components were entered in the form of name=object. Giv-

ing the list elements names will help in parameter interpretation, as lavaan will use the

names in the summary() output.

To examine a list in the R console, type the list’s name.

Complimentary Contributor Copy



Using R for the Analysis of Cognitive Ability and Behavior Genetic Data 157

1 > sib.cov

2 $MZ

3 P1 P2

4 P1 225.0 193.5

5 P2 193.5 225.0

6

7 $DZ

8 P1 P2

9 P1 225 135

10 P2 135 225

The same syntax can be used to enter the twin groups’ sample sizes, although the data can

be entered as scalars (i.e., one-dimensional matrices) instead of a matrix.

1 > sib.n<-list(MZ=4672,DZ=5546)

2

3 > sib.n

4 $MZ

5 [1] 4672

6

7 $DZ

8 [1] 5546

Because the covariances from both groups are combined into a single list object, the

lavaan syntax to estimate the parameters the will look the same as with the other CFA

models, e.g., cfa(model, sample.cov=sib.cor, sample.nobs=sib.n).

The only thing left to do is to specify the model. In order to do so, though, certain pa-

rameters need constrained.

Constraining parameters in lavaan can take one of two forms. First, to constrain

a parameter to a specific value, just premultiply the parameter by that value, e.g., g

=˜3*Comprehension. To constrain a parameter estimate to be the same for m > 1
groups, then the constrained parameter needs to have the same label in all the groups. This

can be done in one of two ways. The first way is by specifying m separate models and

giving the parameters to be constrained the same label. The second way is by specifying

one model, but using R’s concatenate function, c(), to apply multiple labels, e.g., for two

groups: g = c(a,a)*Comprehension.

3.1. Behavior Genetic Models

3.1.1. Twin Models

Behavior genetic models can be quite complex, depending the degree(s) of kinship present

in the data, as well as the number of phenotypes (i.e., observable behavior) measured. For

the “classic” model though, we will assume there is just one phenotype measured in both

MZ and DZ twins. (For some multivariate extensions of this model, see, e.g. (Loehlin,

2004; Neale et al., 2003)). The genetic influence on the phenotype can be decomposed

into (a) additive effects of alleles at various loci, (b) dominance effects of alleles at various

loci, and (c) epistatic interactions between loci (Plomin et al., 2008). Often with human

samples, epistatic and dominance effects are confounded, so are lumped into a single non-

additive genetic effects category. The environmental influence on the phenotype can be
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decomposed into (a) effects due to a shared environment, such as being raised by the same

parents in the same house (aka “between-family” effects); and (b) effects due to an unshared

environment, such as having different peers or attending different schools (aka “within-

family” effects). These unshared effects also include random environmental events, such as

getting into automobile accident, as well as random measurement events (i.e, measurement

error).

For relatives i and j, their phenotypes, Pi and Pj , are assumed to be a linear function

of the additive genetic influence (Ai and Aj ), non-additive influence (Di and Dj ), shared

environmental influence (Ci and Cj) and unshared environmental variance (Ei and Ej ).

Thus,

P1 = a1A1 + d1D1 + c1C1 + e1E1

P2 = a2A2 + d2D2 + c2C2 + e2E2

(2)

For a given set of twins, the influences of A, C, D, and E are not expected to differ.

That is, we would not expect, say, the additive genetic influence estimates (a1 and a2) or

the unshared environmental influence estimates (e1 and e2) to differ. Thus, Equation 2 can

be simplified to

P1 = aA1 + dD1 + cC1 + eE1

P2 = aA2 + dD2 + cC2 + eE2

(3)

If twins (no matter the zygosity) are reared together, the shared environment influence

(C) is going to be the same. Likewise, by its definition, the non-shared environment (E) is

going to be completely different. From quantitative genetic theory, we know that for MZ

twins, the genetic influence (i.e., A and D) on a trait will be the same for both twins. For

DZ twins, on average, the additive genetic influence will only be 1/2 the same and the non-

additive genetic influence will be be 1/4 the same.1 From this information, we can build a

path model showing the relationship on a given phenotype between two twin siblings, as is

shown in Figure 8.

Using the labels in Figure 8, the expected correlations on the measured phenotype for

MZ and DZ twins reared together are

MZrP1,P2
= a2 + d2 + c2 (4)

and

DZrP1,P2
= 0.5a2 + 0.25d2 + c2 (5)

respectively. The variance for the trait (for either sibling) is

σ2
P = a2 + d2 + c2 + e2 (6)

Together, equations 4, 5, and 6 represent four unknown parameters (a, b, c and d), but

use input from only three known statistics (
MZ

rP1,P2
,

DZ
rP1,P2

, and σ2
P ). Thus, a “clas-

sic” twin design can only estimate three of the four parameters (Martin, Eaves, Kearsey, &

1This assumes random mating and that the additive genetic influence is uncorrelated with shared environ-

mental or dominance influence.
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Figure 8. ACDE Model.

Davies, 1978). To estimate all the parameters within the same model would require addi-

tional data (e.g., twins separated at birth, relatives of twins (Neale & Maes, 1992)). Not all

the parameters need to be estimated, however, if, say, the hypothesis is that only additive

genetic components and random environmental events are influencing the phenotype. In

fact, with twin designs it is typical to test the the following series of models that postulate

different genetic and environmental components are influencing behavior: ACE, ADE, AE,

CE and E (Maes, 2005).

Below is the lavaan syntax for the full ACDE model for a single measured variable,

using MZ and DZ twins raised together. The model assumes the MZ twins are the first set

of data entered into the R list. To estimate other models, just comment out the unnecessary

parameters.

1 ACDE.model<-’

2 #Latent Variables

3 A1=˜ NA*P1 + c(a,a)*P1

4 A2=˜ NA*P2 + c(a,a)*P2

5 C=˜ NA*P1 + c(c,c)*P1 + c(c,c)*P2

6 D1 =˜ NA*P1 + c(d,d)*P1

7 D2 =˜ NA*P2 + c(d,d)*P2

8

9 #Variances

10 A1 ˜˜ 1*A1

11 A2 ˜˜ 1*A2

12 C˜˜ 1*C

13 D1 ˜˜ 1*D1
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14 D2 ˜˜ 1*D2

15 P1˜˜c(e2,e2)*P1

16 P2˜˜c(e2,e2)*P2

17

18 #covariances

19 A1 ˜˜ c(1,.5)*A2 + 0*C + 0*D1 + 0*D2

20 A2 ˜˜ 0*C + 0*D1 + 0*D2

21 C ˜˜ 0*D1 + 0*D2

22 D1 ˜˜ c(1,.25)*D2

23 ’

Lines 3-6 define the latent variables A1, A2, C, D1, and D2 respectively. The c(a,a)*P1

syntax tells lavaan to use the label a for the parameter estimating the influence from A1

to P1 in both the MZ and DZ groups. As the parameter estimating the influence from A2

to P2 has the same label, lavaan will constrain it to be the same value as well. A similar

interpretation follows for the other c(·)* terms.

This model does not create a E1 or E2 latent variable because, at least for a design with

MZ and DZ twins raised together, these terms represent error/residual variance. Conse-

quently, this model constrains the error variances to be the same for for the MZ and DZ

twins (meaning e2 is estimated instead of e – lines 15-16). The estimate for e can be ob-

tained via e =
√

e2.

Lines 10-14 constrain the variances of A1, A2, and C to unity, while lines 19-22 con-

strain the correlation of both A variables with C and both D variables to zero. The correla-

tion of all residual terms in lavaan are already constrained to zero; thus, there is no need

to specify anything about E1 and E2’s covariance. Lines 19 and 22 serve a dual purpose.

In addition to making correlations equal zero, line 19 also constrains the between-twin A

correlations to be 1 in the first group (MZ twins) and .5 in the second group (DZ twins).

Likewise, line 22 constrains the between-twin D correlations to be 1 for MZ twins and .25

in DZ twins.

The results for the AE model are given below.

1 > AE.fit<-cfa(AE.model, sample.cov=sib.cov, sample.nobs=sib.n)

2 > summary(AE.fit, fit.measures=TRUE, standardized=TRUE)

3 lavaan (0.5-9) converged normally after 27 iterations

4

5 Number of observations per group

6 MZ 4672

7 DZ 5546

8

9 Estimator ML

10 Minimum Function Chi-square 321.458

11 Degrees of freedom 4

12 P-value 0.000

13

14 Chi-square for each group:

15

16 MZ 11.971

17 DZ 309.487

18

19 Chi-square test baseline model:

20

21 Minimum Function Chi-square 8761.454
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22 Degrees of freedom 2

23 P-value 0.000

24

25 Full model versus baseline model:

26

27 Comparative Fit Index (CFI) 0.964

28 Tucker-Lewis Index (TLI) 0.982

29

30 Loglikelihood and Information Criteria:

31

32 Loglikelihood user model (H0) -80117.143

33 Loglikelihood unrestricted model (H1) -79956.414

34

35 Number of free parameters 2

36 Akaike (AIC) 160238.287

37 Bayesian (BIC) 160252.751

38 Sample-size adjusted Bayesian (BIC) 160246.395

39

40 Root Mean Square Error of Approximation:

41

42 RMSEA 0.125

43 90 Percent Confidence Interval 0.113 0.136

44 P-value RMSEA <= 0.05 0.000

45

46 Standardized Root Mean Square Residual:

47

48 SRMR 0.085

49

50 Parameter estimates:

51

52 Information Expected

53 Standard Errors Standard

54

55 Group 1 [MZ]:

56

57 Estimate Std.err Z-value P(>|z|) Std.lv Std.all

58 Latent variables:

59 A1 =˜

60 P1 (a) 13.570 0.091 148.344 0.000 13.570 0.927

61 A2 =˜

62 P2 (a) 13.570 0.091 148.344 0.000 13.570 0.927

63

64 Covariances:

65 A1 ˜˜

66 A2 1.000 1.000 1.000

67

68 Variances:

69 A1 1.000 1.000 1.000

70 A2 1.000 1.000 1.000

71 P1 (e2) 29.930 0.611 29.930 0.140

72 P2 (e2) 29.930 0.611 29.930 0.140

73

74

75

76 Group 2 [DZ]:
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77

78 Estimate Std.err Z-value P(>|z|) Std.lv Std.all

79 Latent variables:

80 A1 =˜

81 P1 (a) 13.570 0.091 148.344 0.000 13.570 0.927

82 A2 =˜

83 P2 (a) 13.570 0.091 148.344 0.000 13.570 0.927

84

85 Covariances:

86 A1 ˜˜

87 A2 0.500 0.500 0.500

88

89 Variances:

90 A1 1.000 1.000 1.000

91 A2 1.000 1.000 1.000

92 P1 (e2) 29.930 0.611 29.930 0.140

93 P2 (e2) 29.930 0.611 29.930 0.140

The results look a little different than previous output. First, the model’s parameter esti-

mates are given in two separate sections, one for Group 1 and the other for Group 2. These

groups are labeled MZ and DZ, respectively, because that is what we named them in the

list() function. To get percent of variance in cognitive ability explained by additive

genetic influences from AE model (i.e., the narrow heritability), square the standardized a
term (i.e., the term in the Std.all column): a2 = .9272 ≈ .86. Likewise, the amount of

variance explained by the unshared environment is e2 = .14. These values should sum up

to one, as they do in this model.

Table 6 has the fit values for all the models. The AE and CE models did not appear

to fit the data very well, and the E model (i.e., the null model), fit the data horribly. The

ADE model shows the exact same fit as the AE model, which normally would be odd, but

can be explained by examining the estimated value for d: 0.00. The fact that there was no

dominance influence is not surprising, given that 1/2 of the MZ correlation ( .86

2
= .43) is

less than the DZ twin correlation (.60) (Evans, Gillespie, & Martin, 2002). Thus, it appears

that the ACE model is the best fitting model of the five, and in fact the ACE model fit

the data extremely well, as its estimated values for a, c and e were able to re-create the

covariances perfectly.

Table 6. Goodness-of-fit statistics and parameter estimates for MZ and DZ twin

models of cognitive ability

Model χ2 df SRMR RMSEA a2 c2 e2 d2

ACE < 0.00a 3 0.00 0.00 0.52 0.34 0.14 –

AE 321.46 4 0.09 0.13 0.86 – 0.14 –

CE 1329.95 4 0.07 0.26 – 0.72 0.28 –

E 8761.45 5 0.42 0.59 – – 1.00 –

ADE 321.46 3 0.09 0.14 0.86 – 0.14 0.00

Note. SRMR: standardized root mean square error; RMSEA: root mean square er-
ror of approximation.
aχ2 = 0.000001843065.
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3.1.2. Non-Twin Sibling Models

While twin data can be very powerful, it can be difficult to collect such data. Collecting

sibling data, however, is much easier, and can also give interesting information about en-

vironmental influences (Plomin, 1994; Jensen, 1980), specifically the power of the shared

and non-shared environment for a given trait (Turkheimer & Waldron, 2000).

A non-twin sibling model for a single phenotype is shown in Figure 9. In such analyses,

the goal is to examine the influence of shared versus non-shared environmental influences,

so there are only two parameters estimated: e and c. As with the twin models, e2 is the

amount of variance explained by the non-shared environment, while c2 is the amount of

variance explained by the shared environment. For an example of a multivariate non-twin

sibling analysis, see, e.g., (Kretschmer & Pike, 2010).

C

P1 P2

E1 E2

c c

e e

Figure 9. Univariate Sibling Analysis.

Some example data come from (Foong, Beaujean, Frisby, & Knoop, 2012), who gath-

ered cognitive ability information on a group of siblings (n = 17) in middle school using

the Woodcock Johnson-Third Edition Tests of Cognitive Abilities (Woodcock, McGrew, &

Mather, 2001). For this data, the siblings were spilt by age into into older (P1) and younger

(P2) sibling categories. The lavaan syntax to input and name the covariance matrix is

given below.

1 #Sibling data

2 BIA.cov<-matrix(c(293.4706, 119.1287, 119.1287, 220.7574),ncol=2)

3 colnames(BIA.cov)<-rownames(BIA.cov)<-c("P1", "P2")

Specifying the model is very similar to the ACDE type models, only here we are just

specifying the C and E components of that model.

1 sibling.model<-’

2 Shared =˜ NA*P1 + c*P1 + c*P2

3 P1˜˜e2*P1

4 P2˜˜e2*P2

5 Shared˜˜1*Shared

6 ’

The results from this model are given below.
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1 sibling.fit<-cfa(sibling.model, sample.cov=BIA.cov, sample.nobs=17)

2 summary(sibling.fit, standardized=TRUE)

3 lavaan (0.5-9) converged normally after 27 iterations

4

5 Number of observations 17

6

7 Estimator ML

8 Minimum Function Chi-square 0.438

9 Degrees of freedom 1

10 P-value 0.508

11

12 Parameter estimates:

13

14 Information Expected

15 Standard Errors Standard

16

17 Estimate Std.err Z-value P(>|z|) Std.lv Std.all

18 Latent variables:

19 Shared =˜

20 P1 (c) 10.589 3.054 3.467 0.001 10.589 0.681

21 P2 (c) 10.589 3.054 3.467 0.001 10.589 0.681

22

23 Variances:

24 P1 (e2) 129.869 44.545 129.869 0.537

25 P2 (e2) 129.869 44.545 129.869 0.537

26 Shared 1.000 1.000 1.000

The results indicate that the model fit the data relatively well (χ2 = .438). According

to this model, the shared environment explains approximately 46% of the variance (i.e.,

.6812 = .46), while the unique environment explains approximately 54% of the variance.

4. Conclusion

This chapter has shown how R (R Development Core Team, 2011) can be a powerful tool

in the analysis of latent variable models of cognitive ability data, specifically focussing on

the lavaan (Rosseel, 2012) package, which is designed especially for structural equation

modeling with latent variables. With such tools, the analysis of latent variables models

can be accessible to any who are interested in such models. When added to fact that the

only cost involved in using R is the time it takes to learn the language, it is easy to see why

(Kelley, Lai, & Wu, 2008) write that “there is no time like the present to begin incorporating

R into one’s set of statistical tools” (p. 569).
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