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There is frequently a need to compare a client’s test scores from different instruments. If
the scores come from instruments that use the same scale, it is tempting to compare the
scores directly. Unfortunately, this method can lead clinicians to believe that there is a
large difference between scores when the difference is minimal. As an alternative, we
outline a method for score comparison that uses information from criterion-related
validity studies. Using three examples, we show why this method is more psychometri-
cally sound, produces more accurate comparison scores, and requires little extra work
for clinicians than the direct comparison approach. To make the score comparison pro-
cess easy for clinicians to use, we include an appendix that demonstrates how to
implement this method in Microsoft Excel and the free R program.
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Psychological assessment is an important part of clinical
practice (Castillo, Curtis, & Gelley, 2012; Evers et al.,
2012; Norcross & Karpiak, 2012). Although its use for
diagnosis is still important (Swets, Dawes, & Monahan,
2000), assessment sequelae extend beyond this. Psycho-
logical assessment is also used for treatment (Lambert
& Vermeersch, 2013), determining service eligibility
(Swenson, 2013), and even death penalty decisions
(Gresham, 2009).

Yet, despite its importance, typical training in assess-
ment is rather minimal (Aiken, West, & Millsap, 2008;
Haverkamp, 2013; Stedman, Hatch, & Schoenfeld,
2001). Even worse, the training that many receive in core
psychometrics—the foundation for properly interpreting
assessment results—is cursory (Childs & Eyde, 2002;
Handler & Smith, 2012). Consequently, it is not surpris-
ing that internship sites find their trainees underprepared

to conduct psychological assessments (Clemence &
Handler, 2001), psychologists often select training in
assessment-related skills for their continuing education
(Neimeyer, Taylor, & Philip, 2010), manuscripts are
frequently rejected because of errors stemming from a
lack of formal training in measurement (Reynolds,
2008), and experts suggest probing psychologists’
psychometric knowledge in challenging courtroom
testimony (Reynolds & Milam, 2011).

One of the basic assessment competencies for pro-
fessional psychological practice is the ability to interpret
and integrate scores from multiple psychological tests
(Fouad et al., 2009). A key skill in this competency is
the ability to compare test scores. This skill is important
as it is used to compare results from different assess-
ments (i.e., compare current results to previous results),
as well as to compare scores from different tests within
the same assessment (e.g., cognitive ability and academic
achievement). The methods that psychologists use to
compare scores, however, are not always aligned with
best practice.
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TYPICAL METHODS FOR SCORE
COMPARISONS

Direct Comparison

Modern psychological tests frequently place scores on
well-known scales, such as the IQ scale or the T scale.
The use of common scales makes it easy to believe that
scores from two tests (i.e., Test1 and Test2) can be directly
compared. As some authors advocate (e.g., Flanagan,
Ortiz, & Alfonso, 2007), if Test1 and Test2 ostensibly
have the same mean and standard deviation (SD), then
it is easy to believe that an individual’s score on Test1

should be the same as the individual’s score on Test2.
The direct comparison method makes two major

assumptions: The score variability for Test1 is the same
as that for Test2, and the score mean of Test1 is the same
as that for Test2. Because test publishers purposefully
give their tests’ scores a common mean and SD, it is easy
to think these assumptions are appropriate. We argue
that this assumption is false: Test scores from different
instruments are typically not measured on equivalent
(i.e., directly comparable) units. We present two lines
of support for this argument. The first revolves around
how test scores are usually created and the second
involves examining empirical evidence.

The original scores obtained from a test are raw
scores and are calculated by quantifying a respondent’s
performance, such as summing the items answered
correctly. Raw scores are problematic because their
units (e.g., number of items answered correctly) are
not interpretable by those not very familiar with the test
(Angoff, 1971). Consequently, most test developers
transform the raw scores to values that are easier to
interpret. A common score transformation is the Z score
transformation.1 The formula to transform raw scores
to Z scores is

Z Score ¼ Raw Score"Raw Score Mean

Raw Score Standard Deviation
ð1Þ

where the raw score is the raw test value from an exam-
inee selected from the normative sample, and the raw
score mean and raw score standard deviation are the
mean and SD of all the raw scores, respectively, pro-
duced by the normative sample.

Equation 1 shows that the Z-score transformation
requires two steps. First, it requires subtracting the
normative sample’s average raw score from each respon-
dent’s raw score, the results of which are sometimes
called a mean–deviation score. Doing this makes the

average Z score equal to 0 and changes the score’s
interpretation. While raw scores measure some aspect
of the respondents’ actual performance on the particular
test, Z scores measure the difference between the
respondents’ raw scores and the normative sample’s
average score. Second, the Z-score transformation
requires dividing the mean–deviation score by the
normative sample’s SD, which has two major effects
on the resulting scores. First, it converts the unit from
that used by the raw scores (e.g., number of items
answered correctly) to an SD. Second, it makes the
SD of the Z scores equal 1.

Because Z scores require the use of decimals and
half of a sample’s Z scores will always be negative, test
publishers often alter the mean and SD to make the
values non-negative integers. To convert the Z scores’
scale, multiply them by the new SD of interest. Likewise,
to convert the Z scores’ mean, add the mean of interest
to each score. For example, placing Z scores onto the IQ
scale requires multiplying all the Z scores by 15, adding
100, and rounding the values to the nearest integer
(Seashore, 1955).

An important part of our description for creating Z
scores was their absolute dependence on the normative
sample used to create them. This translates into practice
as meaning that the same raw score will be converted to
different Z scores depending on the sample used for
their creation. If the test developers use representative
samples, the difference for a given raw score’s Z score
between one sample and another should be small, but
it will likely not be 0. Thus, because psychological tests
use different normative samples to develop their scores,
the resulting Z scores (and any subsequent scale transfor-
mations) are typically not directly comparable. More-
over, if the norming process was done multiple years
apart, the Flynn effect (i.e., secular gains in average test
scores of measures of cognitive ability; Flynn, 2012)
could also create score differences.

To bolster the argument against using direct
comparisons further, one need only examine the
criterion-related validity (CRV) studies of most psycho-
logical tests. Such studies are usually conducted by
having the same individuals take two tests (American
Educational Research Association [AERA], American
Psychological Association [APA], & National Council
on Measurement in Education [NCME], 1999). When
reports of these studies contain the means and SDs of
the test scores, they often show that these values are
not equivalent for the two tests. We demonstrate this
in Table 1, which contains the means and SDs from
CRV studies of some popular tests of cognitive ability.
Thus, tests’ CRV studies provide further evidence that
the equal variability and equal means assumptions on
which the direct comparison method relies are usually
not met.

1This is an oversimplification of the transformation process, as
techniques such as smoothing, continuous norming, and score normal-
ization are also frequently employed during the raw-score conversion
process.
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Correlation Method

The correlation method uses the correlation between the
scores on Test1 and Test2 to predict the score on Test2

from the score on Test1 (Schneider, 2013). One benefit
of this method is that it accounts for regression to the
mean for extreme scores (for an accessible description
of the phenomenon of the regression to the mean, see
Healy & Goldstein, 1978). For extremely low scores on
Test1, the correlation method will predict scores on Test2

that are not as low—that is, Test2’s predicted score will
be closer to its mean than Test1’s score is to its mean.
The same applies to extremely high scores as well.

Although the correlation method is somewhat better
than direct comparisons, it also has some problems.
First, it makes the same assumptions of the direct com-
parison method. Namely, because Test1 and Test2 were
transformed to have the same mean and SD within their
own standardization sample, these means and SDs are
equivalent across instruments. Thus, the same arguments
against using direct comparisons can also be used against
using the correlation method. Second, this method
assumes that if Test1 and Test2 use the same scale, they
are interchangeable. Consequently, Test1 will predict
the same score for Test2 as Test2 predicts for Test1. This
second assumption will become more evident in the
second example that we present later in this manuscript.
Third, this method does not account for the Flynn effect,
which could change the average score values if the tests
were normed at different times.

As an alternative to the direct comparison and
correlation methods, we propose a third method for
score comparison. Our method is very similar to the
correlation method, but it uses the means, SDs, and
correlations from CRV studies to predict test scores.

USING CRITERION-RELATED VALIDITY
STUDIES FOR SCORE COMPARISON

Using information from CRV studies to compare scores
requires the use of simple regression. One of the major

purposes of simple regression is to predict the value
on one variable from a value on another variable
(Cohen, Cohen, West, & Aiken, 2003). Regression
may be unfamiliar to, or not well understood by, some
clinicians. Consequently, we review the basic ideas.

Simple Regression

Understanding how to use simple regression to predict
test scores requires little more than knowledge about
linear functions. An example of a linear function is

Test2

outcome variable
¼ a

intercept
þ b

slope
&

Test1

predictor
variable

ð2Þ

The two major parts of Equation 2 are the b and a
terms. The b term is the slope and represents the ‘‘rise’’
of a line over its ‘‘run.’’ For our purposes, b indicates
how much Test2’s scores change when Test1’s scores
change one unit. The a term in Equation 2 is the inter-
cept. It represents the value of Test2 when Test1 has a
value of 0. As 0 is not a possible value for many psycho-
logical tests, another way of thinking about a is that it is
a constant that accounts for the difference between the
observed mean of Test2 and the mean of Test2 predicted
by Test1 when it is multiplied by b. If there are no mean
differences between Test1 and Test2, then the intercept
will be close to 0.

An example of a linear function is shown in Figure 1a.
In the figure, the slope is .80, meaning that when Test1

increases by 1 unit, then Test2 is predicted to increase
0.80 units. The intercept is 10, meaning that individuals
who obtained a score of 0 on Test1 are predicted to earn
a score of 10 on Test2. Figure 1b shows a picture of
Figure 1a zoomed out to show the intercept.

After finding the values for a and b, Equation 2 can
be used to predict scores on Test2 from Test1 scores.
The predicted Test2 values are symbolized as dTest2Test2 and
read as Test2-hat. The predicted values for Test2 are

TABLE 1
Sample of Criterion-Related Validity Studies

Test 1 Test 2

ReferenceTest Mean SD Test Mean SD

RIAS 100.32 16.18 WISC-III 107.89 17.97 Reynolds & Kamphaus (2003)
WAIS-III 102.90 14.90 WAIS-IV 100.00 15.20 Wechsler (2008)
WPPSI-IV 100.20 12.70 WISC-IV 105.30 12.50 Wechsler, Coalson, & Raiford (2012)
WAIS-III 107.00 18.70 SB-V 101.50 14.40 Roid (2003)

Note. Reported scores are the Full-Scale IQ or its equivalent. RIAS¼Reynolds Intellectual Assessment Scales; WAIS-III¼Wechsler Adult
Intelligence Scale-Third Edition; WAIS-IV¼Wechsler Adult Intelligence Scale-Fourth Edition; WISC-III¼Wechsler Intelligence Scale for
Children-Third Edition; WISC-IV¼Wechsler Intelligence Scale for Children-Fourth Edition; WPPSI-IV¼Wechsler Preschool and Primary Scale
of Intelligence-Fourth Edition; SB-V¼Stanford-Binet Intelligence Scales-Fifth Edition.
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calculated as

dTest2Test2 ¼ aþ b& Test1 ð3Þ

Accounting for Imperfect Relationships Between
Tests

Very seldom are there perfect relationships in psychologi-
cal assessment. Instead, most work deals with imperfect
probabilistic relationships that involve error. Accounting
for this error requires a slight alteration of Equation 2 to

include an error term:

Test2

outcome
variable

¼ a
intercept

þ b
slope

&
Test1

predictor
variable

þ e
error

ð4Þ

Combining Equations 3 and 4 shows the error term is
just the difference between the actual value of Test2 and
the predicted value of Test2 (i.e., Test2 " dTest2Test2). Conse-
quently, the best values to use for a and b are those that
make the error term as small as possible, which then
make Test2 and dTest2Test2 as close as possible.

The interpretation of the values in Equation 4 is very
similar to the interpretation of values in Equation 2,
except that now probabilistic language is used. The
slope, b, is how much Test2 is expected (i.e., on average)
to change when Test1 increases by 1 point. The intercept,
a, is the expected value of Test2 when Test1 is 0. The
predicted Test2 score, dTest2Test2, is still calculated using
Equation 3, but its interpretation is now the expected
value of Test2 for all the respondents who earned a
specific score on Test1.

Relationship Between Regression Slope and
Correlation

Regression and correlation are intimately related to each
other. To understand this, imagine transforming the
scores from Test1 and Test2 to Z scores (see Equation
1). Then, use these Z scores to estimate the values for
the slope and intercept (i.e., a and b) in Equation 4.
The use of Z scores in this situation causes two things
occur: (a) The intercept becomes 0; and (b) the slope
becomes the Person correlation coefficient.2

As we stated previously, using correlations to predict
test scores is problematic. CRV studies, however,
usually opt to only report test scores’ correlations
instead of slopes. Fortunately, converting a correlation
to a slope for a simple regression is a straightforward
calculation:

b ¼ r12 &
SD2

SD1
ð5Þ

where r12 is the correlation between Test1 and Test2, and
SD1 and SD2 are the SDs for Test1 and Test2, respect-
ively (Cohen et al., 2003). To use Equation 5, the data
for all three statistics (i.e., r12, SD1, and SD2) should
all come from the same sample.

FIGURE 1 Plot of a simple linear function between two test scores on
the IQ scale.

2In some texts, the slope estimated using Z scores is called a stan-
dardized regression coefficient.
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PREDICTING TEST2 SCORES FROM TEST1

SCORES

Clinicians are seldom given the values of a and b that
would allow them to predict test scores. Nonetheless,
we can still predict the score on Test2 from a score on
Test1. To do so requires five values: (a) mean of Test2

(M2); (b) SD of Test2 (SD2); (c) mean of Test1 (M1);
(d) SD of Test1 (SD1); and (e) the correlation between
Test2 and Test1 (r12). Such values are frequently provided
in CRV studies. To use these values, modify Equation 3
to take into account the correlation–slope relationship
given in Equation 5:

dTest2Test2

predicted test score
¼

M2

intercept
þ r12 &

SD2

SD1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
slope

& ðTest1 "M1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
collected test score

ð6Þ

Confidence Intervals for Predicted Scores

When using test scores, it is typically better to interpret
the confidence interval (CI) around the score than the
score itself, as including a CI gives an indication of the
precision of the test score (AERA, APA, & NCME,
1999; Hall v. Florida, 2014). The same logic applies
when predicting test scores; we want both the predicted
value and the CI for the predicted value.

There are three components involved in creating a CI
for a predicted test score: (a) the predicted test score
( dTest2ÞTest2Þ; (b) the desired confidence level, which will be
1 minus the type 1 error rate, alpha (i.e., 1 "alpha);
and (c) the amount of error in the regression equation
used to predict the test score (rdTest2Test2

). Combing those

three parts produces a (1" alpha)% CI:

dTest2Test2 ' rdTest2Test2

&Nalpha=2 ð7Þ

where Nalpha=2 is the value from a standard normal
distribution (i.e., a normal distribution with a mean of 0
and SD of 1) that has alpha=2% of the area to the left
and alpha=2% of the area to the right.

For relatively large sample sizes, the value for rdTest2Test2can be approximated by

rdTest2Test2

( SD2 &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" r2

12

q
ð8Þ

where SD2 is the SD of Test2, and r2
12 is the squared

correlation between Test1 and Test2 (Crocker & Algina,
1986). Notice in Equation 8 that the size of rdTest2Test2

, and

consequently the size of the CI, is directly related to
the correlation between the two tests. Larger correla-
tions between the two tests produce narrower CI widths.

EFFECTS OF USING THE INCORRECT
MEANS AND STANDARD DEVIATIONS

What happens when incorrect mean or SD values are
used to predict test scores? If only the means are wrong,
then Equation 6 tells shows that the effect will be to
overpredict or underpredict the value for Test2 in a
systematic fashion. For example, if there was a 10-point
difference between the mean used in Equation 6 and the
value it should be, then the predicted values for Test2

will be overpredicted or underpredicted by 10 points.
The effect of using the wrong SDs is a little more com-

plicated. According to Equation 5, the effect depends on
the way the SDs are wrong. If the SD of Test2 is less than
the SD of Test1, then the predicted values move away
from their mean value. Thus, Test2 values are underpre-
dicted when Test1 scores are below the mean and over-
predicted when Test1 scores are above the mean. If the
SD of Test2 is greater than the SD of Test1, then the pre-
dicted values for Test2 move close to the mean. Thus,
Test2 scores will be overpredicted when Test1 scores are
below the mean and underpredicted when Test1 scores
are above the mean. If both the means and the variances
are wrong, then the discrepancy between the correctly
and incorrectly predicted values can be difficult to under-
stand. To make it easier, we present an example that
shows the effects of using incorrect means and SDs.

Example 1

In Table 2, we show some predicted scores for Test2

based on Test1 scores. The mean and SD for Test1 are
100 and 15, respectively, and the obtained scores on Test1

are either 100, 70, or 130 (representing the mean and
values 2 SDs above and below the mean). The SDs for
Test2 are either the same as Test1 (i.e., SD¼ 15), lower
than Test1 (i.e., SD¼ 10), or higher than Test1 (i.e.,
SD¼ 15). The correlations between Test1 and Test2 are
set at .70 and .90.

The first three comparisons in Table 2 contain the
situation where the means and SDs are the same for both
tests. We refer to this situation as the baseline. With a
correlation of .70 or .90, the predicted values for Test2

are relatively close to the Test1 scores, although the
predicted values using the .70 correlation are closer
toward Test2’s mean than the predicted values using
.90. Another thing to notice about these comparisons is
that the 95% CIs are much wider for the .70 correlation
than the .90 correlation. This situation repeats itself for
all comparisons in Table 2.

For the remaining comparisons (4–27), the assump-
tions of the means or SDs being the same for Test1 and
Test2 are not met. For Comparisons 4 through 9, the
SDs are the same for both tests, but the means differ.
In Comparisons 4 through 6, the mean for Test2 is 10
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points below that of Test1. Consequently, the predicted
Test2 scores are 10 points lower than those from their
baseline scores. In Comparisons 7–9, the mean for Test2

is 10 points greater than that of Test1, making the
predicted scores on Test2 10 points higher than their
baseline scores. These underpredictions and overpredic-
tions apply to both the correlations of .70 and .90.

Comparisons 10 through 18 repeat Comparisons 1
through 9, only add that the SD for Test2 is one third
smaller than that of Test1 (i.e., the SD is 10 instead of
15). For Comparisons 10 through 12, there are no mean
differences. For an average score on Test1 (Comparison
11), the predicted value for Test2 is the same as when the
SD for both tests is the same (i.e., Comparison 2). This
applies to both correlations. When the score on Test1

deviates from its mean, however, the predicted values
for Test2 begin to move toward their mean. In Compari-
son 10, the score for Test1 is 70. With a correlation of .90,
the predicted value for Test2 is 82 (18 points away from
100), while in Comparison 1, the predicted value is 73
(27 points away from 100). The difference between the

predicted values is 9 points. With a correlation of .70,
the predicted value is 86 (14 points away from 100), while
in Comparison 1, the predicted value is 79 (21 points
away from 100). The difference between the predicted
values is 7 points. Similar phenomena occur for
Comparison 12.

Comparisons 13 through 15 not only have an SD for
Test2 that is one third smaller than that for Test1, but
also add that the mean for Test2 is 10 points lower than
that of Test1. For an average score on Test1 (i.e., Com-
parison 14), the predicted value of Test2 is 10 points
lower than the score predicted from Comparison 2—
the same phenomenon that occurred with Comparisons
4 through 6. This effect occurred with both correlations.
When the score on Test1 deviates from its mean,
however, the predicted values for Test2 move toward
their means. For example, Comparison 13 has a score
of 70 on Test1. With a correlation of .90, the predicted
value is 72 (18 points away from 90), while in Com-
parison 1, the predicted value is 73 (27 points away from
100). The difference between the predicted values is 1

TABLE 2
Sample Predicted Values for Test2

Comparison Test1

Test2

M2 SD2

Correlation¼ .90 Correlation¼ .70

Pred2 LB95 UB95 Off Pred2 LB95 UB95 Off

1 70 100 15 73 60 86 0 79 58 100 0
2 100 100 15 100 87 113 0 100 79 121 0
3 130 100 15 127 114 140 0 121 100 142 0
4 70 90 15 63 50 76 "10 69 48 90 "10
5 100 90 15 90 77 103 "10 90 69 111 "10
6 130 90 15 117 104 130 "10 111 90 132 "10
7 70 110 15 83 70 96 10 89 68 110 10
8 100 110 15 110 97 123 10 110 89 131 10
9 130 110 15 137 124 150 10 131 110 152 10

10 70 100 10 82 73 91 9 86 72 100 7
11 100 100 10 100 91 109 0 100 86 114 0
12 130 100 10 118 109 127 "9 114 100 128 "7
13 70 90 10 72 63 81 "1 76 62 90 "3
14 100 90 10 90 81 99 "10 90 76 104 "10
15 130 90 10 108 99 117 "19 104 90 118 "17
16 70 110 10 92 83 101 19 96 82 110 17
17 100 110 10 110 101 119 10 110 96 124 10
18 130 110 10 128 119 137 1 124 110 138 3
19 70 100 20 64 47 81 "9 72 44 100 "7
20 100 100 20 100 83 117 0 100 72 128 0
21 130 100 20 136 119 153 9 128 100 156 7
22 70 90 20 54 37 71 "19 62 34 90 "17
23 100 90 20 90 73 107 "10 90 62 118 "10
24 130 90 20 126 109 143 "1 118 90 146 "3
25 70 110 20 74 57 91 1 82 54 110 3
26 100 110 20 110 93 127 10 110 82 138 10
27 130 110 20 146 129 163 19 138 110 166 17

Note. The mean and standard deviation (SD) of Test1 are 100 and 15, respectively. M2¼mean of Test2; SD2¼SD of Test2; Pred2¼ predicted
score on Test2 given Test1 score; LB95¼ lower bound of 95% confidence interval (CI); UB95¼ upper bound of 95% CI; Off¼ how much the baseline
predicted values (Comparisons 1 through 3) differ from the actual predicted value.
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point. With a correlation of .70, the predicted value is 76
(14 points away from 90), while in Comparison 1, the
predicted value is 79 (21 points away from 100). The
difference between the predicted values is 3 points.

In Comparison 15, the score on Test1 is 130. With a
correlation of .90, the predicted value for Test2 is 108
(18 points away from 90), while in Comparison 3, the
predicted value is 127 (27 points away from 100). The dif-
ference between the predicted values is 19 points. With a
correlation of .70, the predicted value is 104 (14 points
away from 90), while in Comparison 3, the predicted
value is 121 (21 points away from 100). The difference
between the predicted values is 17 points. Similar
phenomena occur for Comparisons 16 through 18 as it
did for Comparisons 13 through 15, only in the opposite
direction: Low scores on Test1 produce larger differences
from the baseline than do high scores.

Integrating the results from Comparisons 13 through
18 shows that when the values of Test1 are close to the
actual mean of Test2 and the actual SD of Test2 is smal-
ler than that of Test1, the amount the predicted scores
will be off by not accounting for the correct mean and
the SD will be small. As the values for Test1 depart from
the actual mean of Test2, then the amount of the
predicted values for Test2 will be off by not accounting
for the correct mean and the SD begins to increase,
reaching 19 points in some instances (e.g., Comparisons
15–16).

Comparisons 22 through 27 produce results that are
the direct opposite of Comparisons 13 through 18. Here
the SD for Test2 is one third larger than that for Test1.
Consequently, the results in Comparisons 22 through 27
show the opposite effect of Comparisons 13 through 18.
When the value of Test1 is far from the actual mean of
Test2, then the amount of the predicted values will be
off by not accounting for the correct mean and the SD
will be small. As the values for Test1 get closer to the
actual mean of Test2, then the amount of the predicted
values for Test2 will be off by not accounting for the
correct mean and the SD begins to increase.

Example 2

As a different example, we use some of the CRV data
from Table 1. In this scenario, a psychologist working
in a hospital has a client who was administered the Third
Edition of the Wechsler Intelligence Scale for Children
(WISC-III; Wechsler, 1991) a few years before and
earned a Full-Scale IQ (FSIQ) score of 65. The client’s
physician requested a new psychological evaluation,
and as part of the test battery, the psychologist adminis-
tered the Reynolds Intellectual Assessment Scales
(RIAS; Reynolds & Kamphaus, 2003). What is the
client’s predicted composite index (CIX) score on the
RIAS, given the FSIQ score on the WISC-III?

All the information needed to calculate the score is
provided in Table 1 except the correlation, which the
RIAS technical manual reports to be .76 (Reynolds &
Kamphaus, 2003, p. 105). Plugging the known values
into Equation 6 gives:

70:97 ¼ 100:32þ 0:76&
16:18

17:97

# $
& 65" 107:89ð Þ

Thus, the client’s predicted CIX score on the RIAS is
71. To make a 95% CI around the predicted value, plug
the known values into Equations 8 and 7:

rdRIASRIAS
( 16:18&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" :762

p
¼ 10:52

and

70:97' 10:52& 1:96

Thus, the 95% CI is 50 and 92. Under the assumption
that the mean and SD for both instruments were 100 and
15, respectively, the psychologist would have calculated a
predicted RIAS CIX score of 73 (95% CI [54, 93]). The
Appendix shows how to calculate predicted scores and
their CIs use CRV data in R and Microsoft Excel.

Now, change the scenario slightly so that the client
had previously earned a RIAS CIX score of 65 and the
psychologist wanted to predict the WISC-III FSIQ score.
Plugging the known values into Equation 6 returns:

78:08 ¼ 107:89þ 0:76& 17:97

16:18

# $
& 65" 100:32ð Þ

Thus, the predicted WISC-III FSIQ score is 78. Using
Equations 8 and 7 to make the 95% CI around the
predicted value produces:

r dWISC"IIIWISC"III
( 17:97&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" :762

p
¼ 11:68

and

78:08' 11:68& 1:96

making the 95% CI 55 and 101.
Under the assumption that the mean and SD for both

instruments were 100 and 15, respectively, the psychol-
ogist would have a predicted WISC-III FSIQ of 73
(95% CI [54, 93]). These are the exact same values
predicted for the RIAS CIX from the WISC-III when
not accounting for the mean and SD differences. Thus,
as we previously stated, a product of the correlation
method is that the predicted values for Test1 based on
Test2 will be exactly the same as the predicted values
for Test2 based on Test1.
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This situation highlights the fact that no matter what
test is used to predict the other, there is no reason to
believe that clients who earn a given score on Test1 will
produce the exact the same score on Test2. Even if they
gave the exact same performance on both tests, clients
will usually not produce the same scores because the
tests’ metrics are not equivalent. Moreover, this example
echoes the results shown in Example 1: Even though a
correlation of .76 seems strong, the CIs around the
predicted test scores are large and indicate the lack of
precision involved in predicting the RIAS from the
WISC-III (and vice versa).

Example 3

For the third example, we compared the CRV, corre-
lation, and direct comparison methods using a data set
containing scores from 206 students referred for special
education services in a large, public Midwestern school
district. All students had WISC-III FSIQ and the RIAS
CIX scores. Values for a random sample of 15 students
are shown in Table 3.

To contrast the different score comparison methods,
we used the methods given by Bland and Altman (1999),
which are shown in Table 4. First, we estimated the
methods’ bias, which is the average amount of difference

between the predicted RIAS score and the actual RIAS
score. The correlation method has almost no bias for
this sample, while the CRV and direct comparison
methods both underpredict RIAS CIX scores by approxi-
mately 3.8 points. Bias is not a major problem in predict-
ing test scores, however, as the effect is systematic and
can be corrected. For the CRV and direct comparison
methods, this would involve adding approximately 3.8
points to each predicted RIAS CIX score.

A more useful measure to compare the methods is the
range of differences between the predicted and actual
scores. This is captured by the limits of agreement
(LoA), which define the range within which most differ-
ences between the predicted and actual RIAS CIX scores
will lie. In other words, LoA provide a range of how
discrepant the predicted RIAS CIX values are from the
actual values. We expect that most of the differences
would be contained in the 95% LoA, so that is what we
show in Table 4. Following Bland and Altman (1986),
interpretation of the 95% LoA for the CRV method is:
The predicted RIAS CIX scores produced by using the
WISC-III FSIQ and Reynolds and Kamphaus’s (2003)
WISC-III CRV study may be 20 points below or 12
points above the actual RIAS CIX scores. Similar
interpretations follow for the direct comparison and
correlation methods’ 95% LoA. Whether this amount
of lack of agreement is acceptable or unacceptable is a
decision for those wishing to compare the scores.

As a point of comparison, the width of the 95% LoA
for the three different score comparison methods shows
that the CRV method produced the smallest LoA, with
the correlation method having a slightly larger width of
approximately 1 point. The direct comparison method,
however, has a much wider LoA. This indicates that
on average, in this sample, the direct comparison
method is much less accurate than the CRV or
correlation method.

TABLE 3
Random Sample of 15 Students’ Scores on the Reynolds Intellectual

Assessment Scales and Wechsler Intelligence Scale for
Children-Third Edition

RIAS
CIX

Predicted Score
Actual–Predicted
Score Difference

WISC-III
FSIQa Correlation CRV

WISC-III
FSIQa Correlation CRV

57 70 77 74 13 20 17
79 77 83 79 "2 4 0
80 60 70 68 "20 "10 "12
86 81 86 82 "5 "0 "4
87 86 89 85 "1 2 "2
89 73 79 76 "16 "10 "13
89 97 98 93 8 9 4
90 69 76 74 "21 "14 "16
95 95 96 91 0 1 "4
97 106 105 99 9 8 2
98 112 109 103 14 11 5

100 102 102 96 2 2 "4
101 118 114 107 17 13 6
114 121 116 109 7 2 "5
119 116 112 106 "3 "7 "13

RIAS¼Reynolds Intellectual Assessment Scales; CIX¼ composite
index score; WISC-III¼Wechsler Intelligence Scale for Children-
Third Edition; FSIQ¼Full-Scale IQ; CRV¼ criterion-related validity;
difference¼difference between predicted RIAS value and actual RIAS
value.

aThis is the direct comparison method as it compares the WISC- III
and the RIAS scores directly.

TABLE 4
Results From Contrasting the Different Score Comparison Methods

Measure

Score Comparison Method

Direct Correlation
Criterion-Related

Validity

Bias "3.84 "0.01 "3.88
95% Limits of

Agreement
(range)

"23.61 - 15.92 "16.4 - 16.38 "19.74 - 11.98

95% Limits of
AgreementWidth

39.54 32.78 31.71

Bias Standard
Error

1.20 1.00 0.96

Note. Values were estimated using 206 students with composite
index scores on the Reynolds Intellectual Assessment Scales and Full-
Scale IQ scores on the Wechsler Intelligence Scale for Children-Third
Edition.
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The last value in Table 4 is the bias value’s standard
error. It is a measure of the precision of the bias and
95% LoA values. The CRV study method produced
the most precise estimates, with the correlation method
being slightly less precise and the direct comparison
method producing the least precise estimates.

RELIABILITY EFFECTS

Throughout this manuscript, we have assumed that the
test scores are perfectly reliable. This is seldom the case
with psychological measures (Shrout, 1998). Unreliabil-
ity in either Test1 or Test2 makes their calculated corre-
lation artificially small. This affects the predicted scores
in two ways. First, it forces the predicted values of Test2

to be closer to their mean. To see this, compare the
results in Table 2 using the correlation of .70 versus using
the correlation of .90. In the extreme case of having no
score reliability, the regression slope would be 0 and
every predicted value for Test2 would be the mean of
Test2. The second way unreliability, and its subsequent
smaller correlations, affects score prediction is through
Equation 8. Artificially small correlations produce
regression error estimates that are too large. As this error
value is used in Equation 7, it has the additional effect of
widening the CIs.

There are ways to correct Equation 6 and Equation 7
to account for unreliability in test scores, but their
complexity places them beyond the scope of the current
article. Interested readers should consult Charter (1996)
and Ree and Carretta (2006) for more information.

IMPLICATIONS FOR PRACTICE

In this manuscript, we discussed three methods of com-
paring scores and showed why the method using CRV
studies is usually the best one to use. The implications
for professional practice are fourfold.

First, unless authors of a test have specifically
designed the scores to be directly comparable to those
from another test, scores from different tests should
not be directly compared to each other quantitatively.
To make a test’s scores be directly comparable with
scores from another test requires either the same norming
sample to be used for both instruments or some advanced
psychometric techniques such as score equating (Dorans,
2004). Currently, this typically only happens with large-
scale standardized tests that produce multiple equivalent
forms of the test.

This prohibition on quantitative comparisons does
not preclude qualitative comparisons. For example, if a
client earned a score of 120 on Test1 and 125 on Test2,

both of which were on the IQ scale, then a statement
such as the following would be appropriate:

On Test1 and Test2 the client’s performance was above
the average performance of the norming samples on
both tests.

Problems only start to arise when making statements
such as, ‘‘The client scored 5 points better on Test2 than
Test1’’ (a direct score comparison) without first placing
the test scores on comparable metrics.

Second, to be able to compare scores correctly
requires CRV studies. These are often found in the test’s
technical manual or peer-reviewed articles. In the
best-case scenario, these studies would be done with a
strong research design, such as using random sampling
and counterbalancing the administered tests. While such
sampling may be used in CRV articles, this seldom
occurs in the CRV studies reported in technical manuals.
Typically, those studies have samples that are smaller
and less representative of the population than the norm-
ing sample. Although not optimal, as long as the range of
scores for Test1 in the CRV study includes the value of
the client’s score, this information is better than having
no CRV studies and making direct comparison of the
scores.

Third, when encountering a situation where there are
no published CRV studies that use the required tests or
the studies do not provide all the required information,
the situation becomes a bit trickier. If all that is provided
are the tests’ correlation, then score comparisons can be
made with the realization that the predicted values will
not be as precise as those that also used the test scores’
means and SDs. Without at least knowing the corre-
lation between the scores, we suggest that test scores
should not be compared quantitatively. The reason for
this is that without at least knowing the correlation
between the tests scores, the way to compare the scores
is the direct comparison method. Not only is this method
more likely to produce overpredicted and underpredicted
values, but this method provides no way of knowing
the precision of the predicted score because it does not
provide enough information to calculate CIs.

Fourth, psychologists should use their knowledge
about a test’s available CRV as part of the selection cri-
teria they use when planning the tests they will adminis-
ter for a given assessment. To find the CRV studies for a
test, psychologists can examine the test’s technical man-
ual as well as other sources such as Google Scholar and
PsycINFO. Although this extra work might appear to be
a burden for practicing psychologists, it falls directly in
line with other guidelines for ethical and evidence-based
assessment practices (Hunsley & Mash, 2008; Joint
Committee on Testing Practices, 2004). The European
Federation of Psychology Associations provides a free
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and relativity simple worksheet to use when making
decisions about test use (Evers et al., 2013).
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APPENDIX

Calculating Predicted Test Scores and Their Confidence Intervals

R Syntax3

# CRV data
test1.mean <- 107.89 test1.sd <- 17.97 test2.mean <- 100.32 test2.sd <- 16.18 test.cor <- .76

# test score
test1.score <- 100

# predicted value
test2.predicted <- test2.mean þtest.cor& (test2.sd=test1.sd)& (test1.score – test1.mean)

# standard error
test2.predicted.se <- test2.sd& sqrt(1 – test.cor^2)

# type one error rate
alpha <- .05

# confidence interval lower bound
test2.predicted – test2.predicted.se& qnorm((1 – alpha=2))

# confidence interval upper bound
test2.predicted þtest2.predicted.se& qnorm((1 – alpha=2))

Microsoft Excel Syntax

3R is a free program that can be downloaded from http://www.r-project.org
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